Previous |  Up |  Next

Article

Title: Indefinite numerical range of $3\times 3$ matrices (English)
Author: Bebiano, N.
Author: Providência, J. da
Author: Teixeira, R.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 1
Year: 2009
Pages: 221-239
Summary lang: English
.
Category: math
.
Summary: The point equation of the associated curve of the indefinite numerical range is derived, following Fiedler's approach for definite inner product spaces. The classification of the associated curve is presented in the $3\times 3$ indefinite case, using Newton's classification of cubic curves. Illustrative examples of all the different possibilities are given. The results obtained extend to Krein spaces results of Kippenhahn on the classical numerical range. (English)
Keyword: indefinite numerical range
Keyword: indefinite inner product space
Keyword: plane algebraic curve
MSC: 15A60
MSC: 15A63
MSC: 46C20
idZBL: Zbl 1224.15043
idMR: MR2486627
.
Date available: 2010-07-20T15:02:56Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140475
.
Reference: [1] Ball, W. W. R.: On Newton's classification of cubic curves.Proc. London Math. Soc. 22 (1890), 104-143 \JFM 23.0778.05.
Reference: [2] Bebiano, N., Lemos, R., Providência, J. da, Soares, G.: On generalized numerical ranges of operators on an indefinite inner product space.Linear and Multilinear Algebra 52 (2004), 203-233. MR 2074863, 10.1080/0308108031000134981
Reference: [3] Bebiano, N., Lemos, R., Providência, J. da, Soares, G.: On the geometry of numerical ranges in spaces with an indefinite inner product.Linear Algebra Appl. 399 (2005), 17-34. MR 2152407
Reference: [4] Brieskorn, E., Knörrer, H.: Plane Algebraic Curves.Birkhäuser Verlag, Basel (1986). MR 0886476
Reference: [5] Fiedler, M.: Geometry of the numerical range of matrices.Linear Algebra Appl. 37 (1981), 81-96. Zbl 0452.15024, MR 0636211, 10.1016/0024-3795(81)90169-5
Reference: [6] Horn, R. A., Johnson, C. R.: Matrix Analysis.Cambridge University Press, New York (1985). Zbl 0576.15001, MR 0832183
Reference: [7] Horn, R. A., Johnson, C. R.: Topics in Matrix Analysis.Cambridge University Press, New York (1991). Zbl 0729.15001, MR 1091716
Reference: [8] Kippenhahn, R.: Über den Wertevorrat einer Matrix.Math. Nachr. 6 (1951), 193-228. Zbl 0044.16201, MR 0059242, 10.1002/mana.19510060306
Reference: [9] Li, C.-K., Rodman, L.: Numerical range of matrix polynomials.SIAM J. Matrix Anal. Appl. 15 (1994), 1256-1265. Zbl 0814.15023, MR 1293915, 10.1137/S0895479893249630
Reference: [10] Li, C.-K., Rodman, L.: Shapes and computer generation of numerical ranges of Krein space operators.Electr. J. Linear Algebra 3 (1998), 31-47. Zbl 0905.47027, MR 1617817
Reference: [11] Li, C.-K., Tsing, N. K., Uhlig, F.: Numerical ranges of an operator in an indefinite inner product space.Electr. J. Linear Algebra 1 (1996), 1-17. MR 1401906
Reference: [12] Murnaghan, F. D.: On the field of values of a square matrix.Proc. Nat. Acad. Sci. USA 18 (1932), 246-248. Zbl 0004.05003, 10.1073/pnas.18.3.246
Reference: [13] Nakazato, H., Bebiano, N., Providência, J. da: The $J$-Numerical Range of a $J$-Hermitian Matrix and Related Inequalities.Linear Algebra Appl. 428 (2008), 2995-3014. MR 2416604
Reference: [14] Nakazato, H., Psarrakos, P.: On the shape of numerical range of matrix polynomials.Linear Algebra Appl. 338 (2001), 105-123. Zbl 0996.15018, MR 1861116, 10.1016/S0024-3795(01)00374-3
Reference: [15] Psarrakos, P.: Numerical range of linear pencils.Linear Algebra Appl. 317 (2000), 127-141. Zbl 0966.15014, MR 1782206, 10.1016/S0024-3795(00)00145-2
Reference: [16] Shapiro, H.: A conjecture of Kippenhahn about the characteristic polynomial of a pencil generated by two Hermitian matrices. II.Linear Algebra Appl. 45 (1982), 97-108. Zbl 0495.15007, MR 0660980, 10.1016/0024-3795(82)90212-9
.

Files

Files Size Format View
CzechMathJ_59-2009-1_16.pdf 529.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo