Previous |  Up |  Next

Article

Title: A Generalization of Baer's Lemma (English)
Author: Dunkum, Molly
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 1
Year: 2009
Pages: 241-247
Summary lang: English
.
Category: math
.
Summary: There is a classical result known as Baer's Lemma that states that an $R$-module $E$ is injective if it is injective for $R$. This means that if a map from a submodule of $R$, that is, from a left ideal $L$ of $R$ to $E$ can always be extended to $R$, then a map to $E$ from a submodule $A$ of any $R$-module $B$ can be extended to $B$; in other words, $E$ is injective. In this paper, we generalize this result to the category $q_{\omega }$ consisting of the representations of an infinite line quiver. This generalization of Baer's Lemma is useful in proving that torsion free covers exist for $q_{\omega }$. (English)
Keyword: Baer's Lemma
Keyword: injective
Keyword: representations of quivers
Keyword: torsion free covers
MSC: 13D30
MSC: 16G20
MSC: 18G05
idZBL: Zbl 1224.13015
idMR: MR2486628
.
Date available: 2010-07-20T15:03:23Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140476
.
Reference: [1] Baer, R.: Abelian groups that are direct summands of every containing abelian group.Bull. Amer. Math. Soc. 46 800-806 (1940). Zbl 0024.14902, MR 0002886, 10.1090/S0002-9904-1940-07306-9
Reference: [2] Enochs, E.: Torsion free covering modules.Proc. Amer. Math. Soc. 14 884-889 (1963). Zbl 0116.26003, MR 0168617, 10.1090/S0002-9939-1963-0168617-7
Reference: [3] Wesley, M. Dunkum: Torsion free covers of graded and filtered modules.Ph.D. thesis, University of Kentucky (2005). MR 2707058
.

Files

Files Size Format View
CzechMathJ_59-2009-1_17.pdf 214.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo