Previous |  Up |  Next

Article

Title: Going down in (semi)lattices of finite Moore families and convex geometries (English)
Author: Gabriela, Bordalo
Author: Nathalie, Caspard
Author: Bernard, Monjardet
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 1
Year: 2009
Pages: 249-271
Summary lang: English
.
Category: math
.
Summary: In this paper we first study what changes occur in the posets of irreducible elements when one goes from an arbitrary Moore family (respectively, a convex geometry) to one of its lower covers in the lattice of all Moore families (respectively, in the semilattice of all convex geometries) defined on a finite set. Then we study the set of all convex geometries which have the same poset of join-irreducible elements. We show that this set---ordered by set inclusion---is a ranked join-semilattice and we characterize its cover relation. We prove that the lattice of all ideals of a given poset $P$ is the only convex geometry having a poset of join-irreducible elements isomorphic to $P$ if and only if the width of $P$ is less than 3. Finally, we give an algorithm for computing all convex geometries having the same poset of join-irreducible elements. (English)
Keyword: closure system
Keyword: Moore family
Keyword: convex geometry
Keyword: (semi)lattice
Keyword: algorithm
MSC: 06A12
idZBL: Zbl 1224.06005
idMR: MR2486629
.
Date available: 2010-07-20T15:04:49Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140477
.
Reference: [1] Barbut, M., Monjardet, B.: Ordre et Classification, Algèbre et Combinatoire, tomes I--II.Hachette, Paris (1970). MR 0419311
Reference: [2] Berman, J., Bordalo, G.: Finite distributive lattices and doubly irreducible elements.Disc. Math. 178 (1998), 237-243. Zbl 0898.06004, MR 1483754, 10.1016/S0012-365X(97)81832-8
Reference: [3] Bordalo, G., Monjardet, B.: Reducible classes of finite lattices.Order 13 (1996), 379-390. Zbl 0891.06001, MR 1452521, 10.1007/BF00405597
Reference: [4] Bordalo, G., Monjardet, B.: The lattice of strict completions of a finite poset.Alg. Univ. 47 (2002), 183-200. Zbl 1058.06001, MR 1916615, 10.1007/s00012-002-8183-2
Reference: [5] Bordalo, G., Monjardet, B.: Finite orders and their minimal strict completion lattices.Discuss. Math. Gen. Algebra Appl. 23 (2003), 85-100. Zbl 1057.06001, MR 2070375, 10.7151/dmgaa.1065
Reference: [6] Caspard, N.: A characterization theorem for the canonical basis of a closure operator.Order 16 (1999), 227-230. Zbl 0959.06005, MR 1765728, 10.1023/A:1006444906980
Reference: [7] Caspard, N., Monjardet, B.: The lattice of closure systems, closure operators and implicational systems on a finite set: a survey.Disc. Appl. Math. 127 (2003), 241-269. MR 1984087, 10.1016/S0166-218X(02)00209-3
Reference: [8] Caspard, N., Monjardet, B.: Some lattices of closure systems.Disc. Math. Theor. Comput. Sci. 6 (2004), 163-190. Zbl 1062.06005, MR 2041845
Reference: [9] Chacron, J.: Nouvelles correspondances de Galois.Bull. Soc. Math. Belgique 23 (1971), 167-178. Zbl 0311.06003, MR 0302514
Reference: [10] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order.Cambridge University Press, Cambridge (1990). Zbl 0701.06001, MR 1058437
Reference: [11] Dilworth, R. P.: Lattices with unique irreducible representations.Ann. of Math. 41 (1940), 771-777. MR 0002844, 10.2307/1968857
Reference: [12] Edelman, P. H., Jamison, R. E.: The theory of convex geometries.Geom. Dedicata 19 (1985), 247-270. Zbl 0577.52001, MR 0815204, 10.1007/BF00149365
Reference: [13] Erné, M.: Bigeneration in complete lattices and principal separation in ordered sets.Order 8 (1991), 197-221. MR 1137911, 10.1007/BF00383404
Reference: [14] Lorrain, F.: Notes on topological spaces with minimum neighborhoods.Amer. Math. Monthly 76 (1969), 616-627. Zbl 0207.21201, MR 0248715, 10.2307/2316662
Reference: [15] Monjardet, B.: The consequences of Dilworth's work on lattices with unique irreducible decompositions.Bogart, K. P., Freese, R., Kung, J. The Dilworth theorems. Selected papers of Robert P. Dilworth. Birkhaüser, Boston (1990), 192-201. MR 1111496
Reference: [16] Monjardet, B., Raderanirina, V.: The duality between the anti-exchange closure operators and the path independent choice operators on a finite set.Math. Social Sci. 41 (2001), 131-150. Zbl 0994.91012, MR 1806682, 10.1016/S0165-4896(00)00061-5
Reference: [17] Nation, J. B., Pogel, A.: The lattice of completions of an ordered set.Order 14 (1997), 1-7. Zbl 0888.06003, MR 1468951, 10.1023/A:1005805026315
Reference: [18] Niederle, J.: Boolean and distributive ordered sets: characterization and representation by sets.Order 12 (1995), 189-210. Zbl 0838.06004, MR 1354802, 10.1007/BF01108627
Reference: [19] Nourine, L.: Private communication.(2003).
Reference: [20] "Ore, O.: Some studies on closure relations.Duke Math. J. 10 (1943), 761-785. MR 0009595, 10.1215/S0012-7094-43-01072-5
Reference: [21] Rabinovitch, I., Rival, I.: The rank of a distributive lattice.Disc. Math. 25 (1979), 275-279. Zbl 0421.06012, MR 0534944, 10.1016/0012-365X(79)90082-7
Reference: [22] Reading, N.: Order dimension, strong Bruhat order and lattice properties for posets.Order 19 (2002), 73-100. Zbl 1007.05097, MR 1902662, 10.1023/A:1015287106470
Reference: [23] Schmid, J.: Quasiorders and sublattices of distributive lattices.Order 19 (2002), 11-34. Zbl 1006.06006, MR 1901058, 10.1023/A:1015291410777
Reference: [24] Wild, M.: A theory of finite closure spaces based on implications.Adv. Math. 108 (1994), 118-139. Zbl 0863.54002, MR 1293585, 10.1006/aima.1994.1069
.

Files

Files Size Format View
CzechMathJ_59-2009-1_18.pdf 346.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo