Previous |  Up |  Next

Article

Title: Locally flat Banach spaces (English)
Author: Johanis, Michal
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 1
Year: 2009
Pages: 273-284
Summary lang: English
.
Category: math
.
Summary: The notion of functions dependent locally on finitely many coordinates plays an important role in the theory of smoothness and renormings on Banach spaces, especially when higher order smoothness is involved. In this note we investigate the structural properties of Banach spaces admitting (arbitrary) bump functions depending locally on finitely many coordinates. (English)
Keyword: polyhedrality
MSC: 46A03
MSC: 46B10
MSC: 46B20
idZBL: Zbl 1224.46024
idMR: MR2486630
.
Date available: 2010-07-20T15:06:18Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140478
.
Reference: [1] Bonic, R., Frampton, J.: Smooth functions on Banach manifolds.J. Math. Mech. 15 (1966), 877-898. Zbl 0143.35202, MR 0198492
Reference: [2] Deville, R., Godefroy, G., Zizler, V.: Smoothness and Renormings in Banach Spaces. Monographs and Surveys in Pure and Applied Mathematics, 64.Longman Scientific & Technical; John Wiley & Sons, Inc. Harlow; New York (1993). MR 1211634
Reference: [3] Deville, R., Godefroy, G., Zizler, V.: The three space problem for smooth partitions of unity and $C(K)$ spaces.Math. Ann. 288 (1990), 613-625. Zbl 0699.46009, MR 1081267, 10.1007/BF01444554
Reference: [4] Fonf, V. P.: Polyhedral Banach spaces.Math. Notes 30 (1982), 809-813. MR 0638435, 10.1007/BF01137813
Reference: [5] Fonf, V. P.: Three characterizations of polyhedral Banach spaces.Uk. Math. J. 42 (1990), 1145-1148. Zbl 0728.46018, MR 1093646, 10.1007/BF01056615
Reference: [6] Fabian, M., Zizler, V.: A note on bump functions that locally depend on finitely many coordinates.Bull. Aust. Math. Soc. 56 (1997), 447-451. Zbl 0901.46007, MR 1490662, 10.1017/S0004972700031233
Reference: [7] Godefroy, G., Pelant, J., Whitfield, J. H. M., Zizler, V.: Banach space properties of Ciesielski-Pol's $C(K)$ space.Proc. Am. Math. Soc. 103 (1988), 1087-1093. Zbl 0666.46019, MR 0954988
Reference: [8] Godefroy, G., Troyanski, S., Whitfield, J. H. M., Zizler, V.: Smoothness in weakly compactly generated Banach spaces.J. Funct. Anal. 52 (1983), 344-352. Zbl 0517.46010, MR 0712585, 10.1016/0022-1236(83)90073-3
Reference: [9] Hájek, P.: Smooth norms that depend locally on finitely many coordinates.Proc. Am. Math. Soc. 123 (1995), 3817-3821. MR 1285993, 10.2307/2161911
Reference: [10] Hájek, P.: Smooth norms on certain $C(K)$ spaces.Proc. Am. Math. Soc. 131 (2003), 2049-2051. Zbl 1017.46002, MR 1963749, 10.1090/S0002-9939-03-06819-9
Reference: [11] Hájek, P.: Smooth partitions of unity on certain $C(K)$ spaces.Mathematika 52 (2005), 131-138. Zbl 1112.46008, MR 2261849, 10.1112/S0025579300000401
Reference: [12] Hájek, P., Johanis, M.: Smoothing of bump functions.J. Math. Anal. Appl. 338 (2008), 1131-1139. MR 2386487, 10.1016/j.jmaa.2007.06.006
Reference: [13] Hájek, P., Johanis, M.: Polyhedrality in Orlicz spaces.Israel J. Math 168 (2008), 167-188. MR 2448056, 10.1007/s11856-008-1062-6
Reference: [14] Haydon, R. G.: Normes infiniment différentiables sur certains espaces de Banach.C. R. Acad. Sci., Paris, Sér. I 315 (1992), 1175-1178 French. Zbl 0788.46008, MR 1194512
Reference: [15] Haydon, R. G.: Smooth functions and partitions of unity on certain Banach spaces.Q. J. Math., Oxf. II. Ser. 47 (1996), 455-468. Zbl 0945.46024, MR 1460234, 10.1093/qmath/47.4.455
Reference: [16] Haydon, R. G.: Trees in renorming theory.Proc. Lond. Math. Soc., III. Ser. 78 (1999), 541-584. Zbl 1036.46003, MR 1674838, 10.1112/S0024611599001768
Reference: [17] Johnson, W. B., (Eds.), J. Lindenstrauss: Handbook of the Geometry of Banach Spaces, Vol. 1.Elsevier Amsterdam (2001). MR 1863689
Reference: [18] Klee, V. L.: Polyhedral sections of convex bodies.Acta Math. 103 (1960), 243-267. Zbl 0148.16203, MR 0139073, 10.1007/BF02546358
Reference: [19] Leung, D. H.: Some isomorphically polyhedral Orlicz sequence spaces.Isr. J. Math. 87 (1994), 117-128. Zbl 0804.46014, MR 1286820, 10.1007/BF02772988
Reference: [20] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. I: Sequence Spaces.Springer (1977). Zbl 0362.46013, MR 0500056
Reference: [21] Pechanec, J., Whitfield, J. H. M., Zizler, V.: Norms locally dependent on finitely many coordinates.An. Acad. Bras. Cienc. 53 (1981), 415-417. Zbl 0486.46020, MR 0663236
Reference: [22] Talagrand, M.: Renormages de quelques $\Cal C(K)$.Isr. J. Math. 54 (1986), 327-334 French. Zbl 0611.46023, MR 0853457, 10.1007/BF02764961
Reference: [23] Toruńczyk, H.: Smooth partitions of unity on some non-separable Banach spaces.Stud. Math. 46 (1973), 43-51. MR 0339255, 10.4064/sm-46-1-43-51
.

Files

Files Size Format View
CzechMathJ_59-2009-1_19.pdf 283.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo