Previous |  Up |  Next

Article

Title: The structure of idempotent residuated chains (English)
Author: Chen, Wei
Author: Zhao, Xianzhong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 2
Year: 2009
Pages: 453-479
Summary lang: English
.
Category: math
.
Summary: In this paper we study some special residuated lattices, namely, idempotent residuated chains. After giving some properties of Green's relation $\mathcal D$ on the monoid reduct of an idempotent residuated chain, we establish a structure theorem for idempotent residuated chains. As an application, we give necessary and sufficient conditions for a band with an identity to be the monoid reduct of some idempotent residuated chain. Finally, based on the structure theorem for idempotent residuated chains, we obtain some characterizations of subdirectly irreducible, simple and strictly simple idempotent residuated chains. (English)
Keyword: idempotent residuated lattice
Keyword: chain
Keyword: band
MSC: 06F05
MSC: 20M10
MSC: 20M99
idZBL: Zbl 1224.06025
idMR: MR2532384
.
Date available: 2010-07-20T15:18:59Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140491
.
Reference: [1] Stanovský, D.: Commutative idempotent residuated lattices.Czech. Math. J. 57 (2007), 191-200. MR 2309960, 10.1007/s10587-007-0055-7
Reference: [2] Galatos, N.: Minimal varieties of residuated lattices.Algebra Universal. 52 (2004), 215-239. Zbl 1082.06011, MR 2161651, 10.1007/s00012-004-1870-4
Reference: [3] Jipsen, P., Tsinakis, C.: A survey of residuated lattices.Ordered Algebraic Structures (J. Martinez, ed.), Kluwer Academic Publishers, Dordrecht (2002), 19-56. Zbl 1070.06005, MR 2083033
Reference: [4] Bahls, P., Cole, J., Galatos, N., Jipsen, P., Tsinakis, C.: Cancellative residuated lattices.Algebra Universal. 50 (2003), 83-106. Zbl 1092.06012, MR 2026830, 10.1007/s00012-003-1822-4
Reference: [5] Blount, K., Tsinakis, C.: The structure of residuated lattices.Internat. J. Algebra Comput. 13 (2003), 437-461. Zbl 1048.06010, MR 2022118, 10.1142/S0218196703001511
Reference: [6] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra.GTM78, Springer (1981). Zbl 0478.08001, MR 0648287
Reference: [7] Howie, J. M.: Fundamentals of Semigroup Theory.London Mathematical Society Monographs, New series, Vol. 12, Oxford Univ Press, New York (1995). Zbl 0835.20077, MR 1455373
.

Files

Files Size Format View
CzechMathJ_59-2009-2_12.pdf 360.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo