Previous |  Up |  Next

Article

Title: Degree sequences of graphs containing a cycle with prescribed length (English)
Author: Yin, Jian-Hua
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 2
Year: 2009
Pages: 481-487
Summary lang: English
.
Category: math
.
Summary: Let $r\ge 3$, $n\ge r$ and $\pi =(d_1,d_2,\ldots ,d_n)$ be a non-increasing sequence of nonnegative integers. If $\pi $ has a realization $G$ with vertex set $V(G)=\{v_1,v_2,\ldots ,v_n\}$ such that $d_G(v_i)=d_i$ for $i=1,2,\ldots , n$ and $v_1v_2\cdots v_rv_1$ is a cycle of length $r$ in $G$, then $\pi $ is said to be potentially $C_r''$-graphic. In this paper, we give a characterization for $\pi $ to be potentially $C_r''$-graphic. (English)
Keyword: graph
Keyword: degree sequence
Keyword: potentially $C_r$-graphic sequence
MSC: 05C07
MSC: 05C38
idZBL: Zbl 1224.05107
idMR: MR2532385
.
Date available: 2010-07-20T15:19:50Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140492
.
Reference: [1] Berge, C.: Graphs and Hypergraphs.North Holland Amsterdam (1973). Zbl 0254.05101, MR 0357172
Reference: [2] Erdős, P., Gallai, T.: Graphs with given degrees of vertices.Math. Lapok 11 (1960), 264-274.
Reference: [3] Fulkerson, D. R., Hoffman, A. J., Mcandrew, M. H.: Some properties of graphs with multiple edges.Canad. J. Math. 17 (1965), 166-177. Zbl 0132.21002, MR 0177908, 10.4153/CJM-1965-016-2
Reference: [4] Gould, R. J., Jacobson, M. S., Lehel, J.: Potentially $G$-graphical degree sequences.In: Combinatorics, Graph Theory, and Algorithms, Vol. 1 Y. Alavi et al. New Issues Press Kalamazoo Michigan (1999), 451-460. MR 1985076
Reference: [5] Kézdy, A. E., Lehel, J.: Degree sequences of graphs with prescribed clique size.In: Combinatorics, Graph Theory, and Algorithms, Vol. 2 Y. Alavi New Issues Press Kalamazoo Michigan (1999), 535-544. MR 1985084
Reference: [6] Lai, C.: The smallest degree sum that yields potentially $C_k$-graphical sequences.J. Combin. Math. Combin. Comput. 49 (2004), 57-64. Zbl 1054.05027, MR 2054962
Reference: [7] Rao, A. R.: The clique number of a graph with given degree sequence.Graph Theory, Proc. Symp. Calcutta 1976, ISI Lecture Notes 4 A. R. Rao (1979), 251-267.
Reference: [8] Rao, A. R.: An Erdős-Gallai type result on the clique number of a realization of a degree sequence.Unpublished.
.

Files

Files Size Format View
CzechMathJ_59-2009-2_13.pdf 227.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo