Previous |  Up |  Next

Article

Title: Further properties of Azimi-Hagler Banach spaces (English)
Author: Azimi, Parviz
Author: Khodabakhshian, H.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 4
Year: 2009
Pages: 871-878
Summary lang: English
.
Category: math
.
Summary: For the Azimi-Hagler spaces more geometric and topological properties are investigated. Any constructed space is denoted by $X_{\alpha ,p}$. We show \item {(i)} The subspace $[(e_{n_k})]$ generated by a subsequence $(e_{n_k})$ of $(e_n)$ is complemented. \item {(ii)} The identity operator from $X_{\alpha ,p}$ to $X_{\alpha ,q}$ when $p>q$ is unbounded. \item {(iii)} Every bounded linear operator on some subspace of $X_{\alpha ,p}$ is compact. It is known that if any $X_{\alpha ,p}$ is a dual space, then \item {(iv)} duals of $X_{\alpha ,1}$ spaces contain isometric copies of $\ell _{\infty }$ and their preduals contain asymptotically isometric copies of $c_0$. \item {(v)} We investigate the properties of the operators from $X_{\alpha ,p}$ spaces to their predual. (English)
Keyword: Banach spaces
Keyword: compact operator
Keyword: asymptotic isometric copy of $\ell _1$
MSC: 46B20
MSC: 46B25
MSC: 47L25
MSC: 56B45
idZBL: Zbl 1218.47134
idMR: MR2563564
.
Date available: 2010-07-20T15:46:01Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140523
.
Reference: [1] Azimi, P.: A new class of Banach sequence spaces.Bull. Iran. Math. Soc. 28 (2002), 57-68. Zbl 1035.46006, MR 1992259
Reference: [2] Azimi, P.: On geometric and topological properties of the classes of hereditarily $\ell_p$ Banach spaces.Taiwanese J. Math. 10 (2006), 713-722. Zbl 1108.46009, MR 2206324, 10.11650/twjm/1500403857
Reference: [3] Azimi, P., Hagler, J.: Example of hereditarily $\ell_p$ Banach spaces failing the Schur property.Pac. J. Math. 122 (1987), 287-297. MR 0831114, 10.2140/pjm.1986.122.287
Reference: [4] Chen, D.: Asymptotically isometric copy of $c_0$ and $\ell_1$ in certain Banach spaces.J. Math. Anal. Appl. 284 (2003), 618-625. MR 1998656, 10.1016/S0022-247X(03)00368-8
Reference: [5] Chen, S., Lin, B. L.: Dual action of asymptotically isometric copies of $\ell_p$ $(1\leq p<\infty)$ and $c_0$.Collect. Math. 48 (1997), 449-458. Zbl 0892.46014, MR 1602639
Reference: [6] Diestel, J.: Sequence and Series in Banach Spaces.Springer New York (1983). MR 0737004
Reference: [7] Dowling, P. N.: Isometric copies of $c_0$ and $\ell_{\infty}$ in duals of Banach spaces.J. Math. Anal. Appl. 244 (2000), 223-227. Zbl 0955.46011, MR 1746799, 10.1006/jmaa.2000.6714
Reference: [8] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. I. Sequence Spaces.Springer Berlin (1977). Zbl 0362.46013, MR 0500056
Reference: [9] Morrison, T. J.: Functional Analysis: An Introduction to Banach Space Theory.John Wiley & Sons (2001). Zbl 1005.46004, MR 1885114
Reference: [10] Pelczynski, A.: Projections in certain Banach spaces.Stud. Math. 19 (1960), 209-228. Zbl 0104.08503, MR 0126145, 10.4064/sm-19-2-209-228
Reference: [11] Popov, M. M.: More examples of hereditarily $\ell_p$ Banach spaces.Ukrainian Math. Bull. 2 (2005), 95-111. Zbl 1166.46304, MR 2172327
.

Files

Files Size Format View
CzechMathJ_59-2009-4_2.pdf 241.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo