Previous |  Up |  Next

Article

Title: Weak solutions to stochastic differential equations driven by fractional Brownian motion (English)
Author: Šnupárková, J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 4
Year: 2009
Pages: 879-907
Summary lang: English
.
Category: math
.
Summary: Existence of a weak solution to the $n$-dimensional system of stochastic differential equations driven by a fractional Brownian motion with the Hurst parameter $H\in (0,1)\setminus \{\frac 12\}$ is shown for a time-dependent but state-independent diffusion and a drift that may by split into a regular part and a singular one which, however, satisfies the hypotheses of the Girsanov Theorem. In particular, a stochastic nonlinear oscillator driven by a fractional noise is considered. (English)
Keyword: fractional Brownian motion
Keyword: Girsanov theorem
Keyword: weak solutions
MSC: 60G22
MSC: 60H10
idZBL: Zbl 1224.60149
idMR: MR2563565
.
Date available: 2010-07-20T15:47:40Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140524
.
Reference: [1] Alòs, E., Mazet, O., Nualart, D.: Stochastic calculus with respect to Gaussian processes.Ann. Probab. 29 (2001), 766-801. MR 1849177, 10.1214/aop/1008956692
Reference: [2] Boufoussi, B., Ouknine, Y.: On a SDE driven by a fractional Brownian motion and with monotone drift.Elect. Comm. Probab. 8 (2003), 122-134. Zbl 1060.60060, MR 2042751, 10.1214/ECP.v8-1084
Reference: [3] Cheridito, P., Nualart, D.: Stochastic integral of divergence type with respect to fBm with Hurst parametr $H\in(0,\frac12)$.Ann. I. H. Poincaré Probab. Stat. 41 (2005), 1049-1081. MR 2172209, 10.1016/j.anihpb.2004.09.004
Reference: [4] Prato, G. Da, Zabczyk, J.: Stochastic Equations in Infinite Dimensions.Cambdridge University Press, Cambridge (1992). Zbl 0761.60052, MR 1207136
Reference: [5] Decreusefond, L., Üstunel, A. S.: Stochastic analysis of the fractional Brownian motion.Potential Anal. 10 (1999), 177-214. MR 1677455, 10.1023/A:1008634027843
Reference: [6] Denis, L., Erraoni, M., Ouknine, Y.: Existence and uniqueness for solutions of one dimensional SDE's driven by an additive fractional noise.Stoch. Stoch. Rep. 76 (2004), 409-427. MR 2096729, 10.1080/10451120412331299336
Reference: [7] Duncan, T. E., Maslowski, B., Pasik-Duncan, B.: Semilinear stochastic equations in a Hilbert space with a fractional Brownian motion.(to appear) in SIAM J. Math. Anal. MR 2481295
Reference: [8] Duncan, T. E., Maslowski, B., Pasik-Duncan, B.: Linear stochastic equations in a Hilbert space with a fractional Brownian motion, Control Theory Applications in Financial Engineering and Manufacturing, Chapter 11, 201-222.Springer-Verlag, New York (2006). MR 2353483
Reference: [9] Fernique, X.: Régularité des trajectoires des fonctions aléatoires gaussiennes.École d'Été de Probabilités de Saint-Flour IV--1974, LNM 480, Springer-Verlag, Berlin (1975), 1-96. Zbl 0331.60025, MR 0413238
Reference: [10] Friedman, A.: Stochastic Differential Equations and Applications, vol. I.AP, New York (1975). MR 0494490
Reference: [11] Hu, Y.: Integral transformations and anticipative calculus for fractional Brownian motions.Mem. Amer. Math. Soc. 175 (2005). Zbl 1072.60044, MR 2130224
Reference: [12] Hu, Y., Nualart, D.: Differential equations driven by Hölder continuous functions of order greater than $1/2$.Stochastic analysis and applications, 399-413, Springer, Berlin (2007). Zbl 1144.34038, MR 2397797
Reference: [13] Karatzas, I., Shreve, S. E.: Brownian Motion and Stochastic Calculus.Springer-Verlag, New York (1988). Zbl 0638.60065, MR 0917065
Reference: [14] Kufner, A., John, O., Fučík, S.: Function Spaces.Academia, Praha (1977). MR 0482102
Reference: [15] Kurzweil, J.: Ordinary Differential Equations.Elsevier, Amsterdam (1986). Zbl 0667.34002, MR 0929466
Reference: [16] Lyons, T.: Differential Equations Driven by Rough Signals.Rev. Mat. Iberoamericana 14 (1998), 215-310. Zbl 0923.34056, MR 1654527, 10.4171/RMI/240
Reference: [17] Lyons, T.: Differential Equations Driven by Rough Signals (I): an extension of an inequality of L. C. Young.Math. Res. Lett. 1 (1994), 451-464. Zbl 0835.34004, MR 1302388, 10.4310/MRL.1994.v1.n4.a5
Reference: [18] Maslowski, B., Nualart, D.: Evolution equations driven by a fractional Brownian motion.J. Funct. Anal. 202 (2003), 277-305. Zbl 1027.60060, MR 1994773, 10.1016/S0022-1236(02)00065-4
Reference: [19] Mémin, J., Mishura, Y., Valkeila, E.: Inequalities for the moments of Wiener integrals with respect to fractional Brownian motions.Stat. Prob. Lett. 51 (2001), 197-206. MR 1822771, 10.1016/S0167-7152(00)00157-7
Reference: [20] Mishura, Y., Nualart, D.: Weak solutions for stochastic differential equations with additive fractional noise.Stat. Probab. Lett. 70 (2004), 253-261. MR 2125162, 10.1016/j.spl.2004.10.011
Reference: [21] Nourdin, I., Simon, T.: On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion.Statist. Probab. Lett. 76 (2006), 907-912. Zbl 1091.60008, MR 2268434, 10.1016/j.spl.2005.10.021
Reference: [22] Nualart, D., Rǎşcanu, A.: Differential Equations driven by Fractional Brownian Motion.Collect. Math. 53 (2002), 55-81. MR 1893308
Reference: [23] Nualart, D., Ouknine, Y.: Regularization of differential equations by fractional noise.Stochastic Process. Appl. 102 (2002), 103-116. Zbl 1075.60536, MR 1934157, 10.1016/S0304-4149(02)00155-2
Reference: [24] Nualart, D., Ouknine, Y.: Stochastic differential equations with additive fractional noise and locally unbounded drift.Stochastic inequalities and applications, 353-365, Birkhäuser, Basel (2003). Zbl 1039.60061, MR 2073441
Reference: [25] Nualart, D.: Stochastic integration with respect to fractional Brownian motion and applications.Stochastic models (Mexico City, 2002), 3-39, Contemp. Math., 336, Amer. Math. Soc., Providence, RI (2003). Zbl 1063.60080, MR 2037156, 10.1090/conm/336/06025
Reference: [26] Zähle, M.: Stochastic differential equations with fractal noise.Math. Nachr. 278 (2005), 1097-1106. MR 2150381, 10.1002/mana.200310295
.

Files

Files Size Format View
CzechMathJ_59-2009-4_3.pdf 390.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo