Previous |  Up |  Next

Article

Title: Holomorphy types and spaces of entire functions of bounded type on Banach spaces (English)
Author: Fávaro, Vinícius V.
Author: Jatobá, Ariosvaldo M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 4
Year: 2009
Pages: 909-927
Summary lang: English
.
Category: math
.
Summary: In this paper spaces of entire functions of $\Theta $-holomorphy type of bounded type are introduced and results involving these spaces are proved. In particular, we ``construct an algorithm'' to obtain a duality result via the Borel transform and to prove existence and approximation results for convolution equations. The results we prove generalize previous results of this type due to B. Malgrange: Existence et approximation des équations aux dérivées partielles et des équations des convolutions. Annales de l'Institute Fourier (Grenoble) VI, 1955/56, 271--355; C. Gupta: Convolution Operators and Holomorphic Mappings on a Banach Space, Séminaire d'Analyse Moderne, 2, Université de Sherbrooke, Sherbrooke, 1969; M. Matos: Absolutely Summing Mappings, Nuclear Mappings and Convolution Equations, IMECC-UNICAMP, 2007; and X. Mujica: Aplicações $\tau (p;q)$-somantes e $\sigma (p)$-nucleares, Thesis, Universidade Estadual de Campinas, 2006. (English)
Keyword: Banach spaces
Keyword: holomorphy types
Keyword: homogeneous polynomials
Keyword: holomorphic functions
Keyword: convolution operators
Keyword: Borel transform
Keyword: approximation and existence theorems
MSC: 46E50
MSC: 46G20
MSC: 46G25
MSC: 47B38
idZBL: Zbl 1224.46087
idMR: MR2563566
.
Date available: 2010-07-20T15:48:42Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140525
.
Reference: [1] Banach, S.: Théorie des opérations linéaires.Hafner New York (1932). Zbl 0005.20901
Reference: [2] Dineen, S.: Holomorphy types on a Banach space.Stud. Math. 39 (1971), 241-288. Zbl 0235.32013, MR 0304705, 10.4064/sm-39-3-241-288
Reference: [3] Fávaro, V. V.: The Fourier-Borel transform between spaces of entire functions of a given type and order.Port. Math. 65 (2008), 285-309. MR 2428422, 10.4171/PM/1813
Reference: [4] Fávaro, V. V.: Convolution equations on spaces of quasi-nuclear functions of a given type and order.Preprint.
Reference: [5] Floret, K.: Natural norms on symmetric tensor products of normed spaces.Note Mat. 17 (1997), 153-188. Zbl 0961.46013, MR 1749787
Reference: [6] Gupta, C.: Convolution Operators and Holomorphic Mappings on a Banach Space. Séminaire d'Analyse Moderne, 2.Université de Sherbrooke Sherbrooke (1969).
Reference: [7] Horváth, J.: Topological Vector Spaces and Distribuitions.Addison-Wesley Reading (1966). MR 0205028
Reference: [8] Malgrange, B.: Existence et approximation des équations aux dérivées partielles et des équations des convolutions.Annales de l'Institute Fourier (Grenoble) VI (1955/56), 271-355. MR 0086990
Reference: [9] Martineau, A.: Équations différentielles d'ordre infini.Bull. Soc. Math. Fr. 95 (1967), 109-154 French. Zbl 0167.44202, MR 1507968, 10.24033/bsmf.1650
Reference: [10] Matos, M. C.: On the Fourier-Borel transformation and spaces of entire functions in a normed space.In: Functional Analysis, Holomorphy and Approximation Theory II. North-Holland Math. Studies. G. I. Zapata North-Holland Amsterdam (1984), 139-170. Zbl 0568.46036, MR 0771327, 10.1016/S0304-0208(08)70827-2
Reference: [11] Matos, M. C.: On convolution operators in spaces of entire functions of a given type and order.In: Complex Analysis, Functional Analysis and Approximation Theory J. Mujica North-Holland Math. Studies Vol. 125 North-Holland Amsterdam (1986), 129-171. Zbl 0658.46016, MR 0893415, 10.1016/S0304-0208(08)72168-6
Reference: [12] Matos, M. C.: Absolutely Summing Mappings, Nuclear Mappings and Convolution Equations.IMECC-UNICAMP (2007),\hfil http://www.ime.unicamp.br/rel\_pesq/2007/rp03-07.html.
Reference: [13] Mujica, X.: Aplicações $\tau(p;q)$-somantes e $\sigma(p)$-nucleares.Thesis Universidade Estadual de Campinas (2006).
Reference: [14] Nachbin, L.: Topology on Spaces of Holomorphic Mappings.Springer New York (1969). Zbl 0172.39902, MR 0254579
Reference: [15] Pietsch, A.: Ideals of multilinear functionals.In: Proc. 2nd Int. Conf. Operator Algebras, Ideals and Their Applications in Theoretical Physics, Leipzin 1983 Teubner Leipzig (1984), 185-199. Zbl 0562.47037, MR 0763541
Reference: [16] Pietsch, A.: Ideals of multilinear functionals.In: Proc. 2nd Int. Conf. Operator Algebras, Ideals and Their Applications in Theoretical Physics, Leipzin 1983 Teubner Leipzig (1984), 185-199. Zbl 0562.47037, MR 0763541
.

Files

Files Size Format View
CzechMathJ_59-2009-4_4.pdf 320.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo