Previous |  Up |  Next


monotone Lindelöf property; generalized ordered topological product; generalized ordered spaces
We provide a necessary and sufficient condition under which a generalized ordered topological product (GOTP) of two GO-spaces is monotonically Lindelöf.
[1] Burke, D. K.: Covering Properties. Handbook of Set-Theoretic Topology. K. Kunnen, J. E. Vanghan North-Holland Amesterdam (1984). MR 0776628
[2] Bennett, H., Lutzer, D., Matveev, M.: The monotone Lindelöf property and separability in ordered spaces. Topology Appl. 151 (2005), 180-186. DOI 10.1016/j.topol.2004.05.015 | MR 2139751 | Zbl 1069.54021
[3] Engelking, R.: General Topology. Sigma Series in Pure Mathematics. Hedermann Berlin (1989). MR 1039321
[4] Faber, M. J.: Metrizability in Generalized Ordered Spaces. Math. Centre Tracts No. 53. Amsterdam (). MR 0418053
[5] Kemoto, N.: Normality of products of GO-spaces and cardinals. Topology Proc. 18 (1993), 133-142. MR 1305127 | Zbl 0832.54029
[6] Lutzer, D.: Ordered topological spaces. In: Surveys in General Topology G. M. Reed Academic Press New York (1980), 247-296. MR 0564104 | Zbl 0472.54020
[7] Xu, A.-J., Shi, W.-X.: On lexicographic products of two GO-spaces with a generalized ordered topology. Topology Proc. 31 (2007), 361-376. MR 2363176 | Zbl 1143.54015
[8] Xu, A.-J., Shi, W.-X.: Monotone Lindelöf property, linearly ordered extensions and lexicographic product. Submitted.
Partner of
EuDML logo