Title:
|
Notes on monotone Lindelöf property (English) |
Author:
|
Xu, Ai-Jun |
Author:
|
Shi, Wei-Xue |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
59 |
Issue:
|
4 |
Year:
|
2009 |
Pages:
|
943-955 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We provide a necessary and sufficient condition under which a generalized ordered topological product (GOTP) of two GO-spaces is monotonically Lindelöf. (English) |
Keyword:
|
monotone Lindelöf property |
Keyword:
|
generalized ordered topological product |
Keyword:
|
generalized ordered spaces |
MSC:
|
54D20 |
MSC:
|
54F05 |
idZBL:
|
Zbl 1224.54073 |
idMR:
|
MR2563568 |
. |
Date available:
|
2010-07-20T15:49:42Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140527 |
. |
Reference:
|
[1] Burke, D. K.: Covering Properties. Handbook of Set-Theoretic Topology.K. Kunnen, J. E. Vanghan North-Holland Amesterdam (1984). MR 0776628 |
Reference:
|
[2] Bennett, H., Lutzer, D., Matveev, M.: The monotone Lindelöf property and separability in ordered spaces.Topology Appl. 151 (2005), 180-186. Zbl 1069.54021, MR 2139751, 10.1016/j.topol.2004.05.015 |
Reference:
|
[3] Engelking, R.: General Topology. Sigma Series in Pure Mathematics.Hedermann Berlin (1989). MR 1039321 |
Reference:
|
[4] Faber, M. J.: Metrizability in Generalized Ordered Spaces. Math. Centre Tracts No. 53.Amsterdam (). MR 0418053 |
Reference:
|
[5] Kemoto, N.: Normality of products of GO-spaces and cardinals.Topology Proc. 18 (1993), 133-142. Zbl 0832.54029, MR 1305127 |
Reference:
|
[6] Lutzer, D.: Ordered topological spaces.In: Surveys in General Topology G. M. Reed Academic Press New York (1980), 247-296. Zbl 0472.54020, MR 0564104 |
Reference:
|
[7] Xu, A.-J., Shi, W.-X.: On lexicographic products of two GO-spaces with a generalized ordered topology.Topology Proc. 31 (2007), 361-376. Zbl 1143.54015, MR 2363176 |
Reference:
|
[8] Xu, A.-J., Shi, W.-X.: Monotone Lindelöf property, linearly ordered extensions and lexicographic product.Submitted. |
. |