Title:
|
A revised closed graph theorem for quasi-Suslin spaces (English) |
Author:
|
Ferrando, J. C. |
Author:
|
Kąkol, J. |
Author:
|
Lopez Pellicer, M. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
59 |
Issue:
|
4 |
Year:
|
2009 |
Pages:
|
1115-1122 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Some results about the continuity of special linear maps between $F$-spaces recently obtained by Drewnowski have motivated us to revise a closed graph theorem for quasi-Suslin spaces due to Valdivia. We extend Valdivia's theorem by showing that a linear map with closed graph from a Baire tvs into a tvs admitting a relatively countably compact resolution is continuous. This also applies to extend a result of De Wilde and Sunyach. A topological space $X$ is said to have a (relatively countably) compact resolution if $X$ admits a covering $\{A_{\alpha }\:\alpha \in \Bbb N^{\Bbb N}\}$ consisting of (relatively countably) compact sets such that $A_{\alpha }\subseteq A_{\beta }$ for $\alpha \leq \beta $. Some applications and two open questions are provided. (English) |
Keyword:
|
$K$-analytic space |
Keyword:
|
web space |
Keyword:
|
quasi-Suslin space |
MSC:
|
46A03 |
MSC:
|
46A30 |
MSC:
|
54C05 |
MSC:
|
54C14 |
MSC:
|
54D08 |
idZBL:
|
Zbl 1224.46004 |
idMR:
|
MR2563582 |
. |
Date available:
|
2010-07-20T16:07:00Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140541 |
. |
Reference:
|
[1] Cascales, B.: On $K$-analytic locally convex spaces.Arch. Math. 49 (1987), 232-244. Zbl 0617.46014, MR 0906738, 10.1007/BF01271663 |
Reference:
|
[2] Cascales, B., Orihuela, J.: On compactness in locally convex spaces.Math. Z. 195 (1987), 365-381. Zbl 0604.46011, MR 0895307, 10.1007/BF01161762 |
Reference:
|
[3] Christensen, J. P. R.: Topology and Borel Structure. Descriptive Topology and Set Theory with Applications to Functional Analysis and Measure Theory, Vol. 10.North Holland Amsterdam (1974). MR 0348724 |
Reference:
|
[4] Comfort, W. W., Remus, D.: Compact groups of Ulam-measurable cardinality: Partial converse theorems of Arkhangel'skii and Varopoulos.Math. Jap. 39 (1994), 203-210. MR 1270627 |
Reference:
|
[5] Dierolf, P., Dierolf, S., Drewnowski, L.: Remarks and examples concerning unordered Baire-like and ultrabarrelled spaces.Colloq. Math. 39 (1978), 109-116. Zbl 0386.46008, MR 0507270, 10.4064/cm-39-1-109-116 |
Reference:
|
[6] Drewnowski, L.: Resolutions of topological linear spaces and continuity of linear maps.J. Math. Anal. Appl. 335 (2007), 1177-1194. Zbl 1133.46002, MR 2346899, 10.1016/j.jmaa.2007.02.032 |
Reference:
|
[7] Drewnowski, L.: The dimension and codimension of analytic subspaces in topological vector spaces, with applications to the constructions of some pathological topological vector spaces. Liège 1982 (unpublished Math. talk).. |
Reference:
|
[8] Drewnowski, L., Labuda, I.: Sequence $F$-spaces of $L_0$-type over submeasures of $\Bbb N$.(to appear). |
Reference:
|
[9] Kąkol, J., Pellicer, M. López: Compact coverings for Baire locally convex spaces.J. Math. Anal. Appl. 332 (2007), 965-974. MR 2324313, 10.1016/j.jmaa.2006.10.045 |
Reference:
|
[10] Kelley, J. L., al., I. Namioka et: Linear Topological Spaces.Van Nostrand London (1963). Zbl 0115.09902, MR 0166578 |
Reference:
|
[11] Kōmura, Y.: On linear topological spaces.Kumamoto J. Sci., Ser. A 5 (1962), 148-157. MR 0151817 |
Reference:
|
[12] Nakamura, M.: On quasi-Suslin space and closed graph theorem.Proc. Japan Acad. 46 (1970), 514-517. MR 0282325 |
Reference:
|
[13] Nakamura, M.: On closed graph theorem.Proc. Japan Acad. 46 (1970), 846-849. Zbl 0223.46008, MR 0291757 |
Reference:
|
[14] Carreras, P. Perez, Bonet, J.: Barrelled Locally Convex Spaces, Vol. 131.North Holland Amsterdam (1987). MR 0880207 |
Reference:
|
[15] Rogers, C. A., Jayne, J. E., Dellacherie, C., Topsøe, F., Hoffman-Jørgensen, J., Martin, D. A., Kechris, A. S., Stone, A. H.: Analytic Sets.Academic Press London (1980). |
Reference:
|
[16] Talagrand, M.: Espaces de Banach faiblement $K$-analytiques.Ann. Math. 110 (1979), 407-438. MR 0554378, 10.2307/1971232 |
Reference:
|
[17] Tkachuk, V. V.: A space $C_p(X) $ is dominated by irrationals if and only if it is $K$-analytic.Acta Math. Hungar. 107 (2005), 253-265. Zbl 1081.54012, MR 2150789, 10.1007/s10474-005-0194-y |
Reference:
|
[18] Valdivia, M.: Topics in Locally Convex Spaces.North-Holland Amsterdam (1982). Zbl 0489.46001, MR 0671092 |
Reference:
|
[19] Valdivia, M.: Quasi-LB-spaces.J. Lond. Math. Soc. 35 (1987), 149-168. Zbl 0625.46006, MR 0871772 |
. |