Previous |  Up |  Next

Article

Title: A revised closed graph theorem for quasi-Suslin spaces (English)
Author: Ferrando, J. C.
Author: Kąkol, J.
Author: Lopez Pellicer, M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 59
Issue: 4
Year: 2009
Pages: 1115-1122
Summary lang: English
.
Category: math
.
Summary: Some results about the continuity of special linear maps between $F$-spaces recently obtained by Drewnowski have motivated us to revise a closed graph theorem for quasi-Suslin spaces due to Valdivia. We extend Valdivia's theorem by showing that a linear map with closed graph from a Baire tvs into a tvs admitting a relatively countably compact resolution is continuous. This also applies to extend a result of De Wilde and Sunyach. A topological space $X$ is said to have a (relatively countably) compact resolution if $X$ admits a covering $\{A_{\alpha }\:\alpha \in \Bbb N^{\Bbb N}\}$ consisting of (relatively countably) compact sets such that $A_{\alpha }\subseteq A_{\beta }$ for $\alpha \leq \beta $. Some applications and two open questions are provided. (English)
Keyword: $K$-analytic space
Keyword: web space
Keyword: quasi-Suslin space
MSC: 46A03
MSC: 46A30
MSC: 54C05
MSC: 54C14
MSC: 54D08
idZBL: Zbl 1224.46004
idMR: MR2563582
.
Date available: 2010-07-20T16:07:00Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140541
.
Reference: [1] Cascales, B.: On $K$-analytic locally convex spaces.Arch. Math. 49 (1987), 232-244. Zbl 0617.46014, MR 0906738, 10.1007/BF01271663
Reference: [2] Cascales, B., Orihuela, J.: On compactness in locally convex spaces.Math. Z. 195 (1987), 365-381. Zbl 0604.46011, MR 0895307, 10.1007/BF01161762
Reference: [3] Christensen, J. P. R.: Topology and Borel Structure. Descriptive Topology and Set Theory with Applications to Functional Analysis and Measure Theory, Vol. 10.North Holland Amsterdam (1974). MR 0348724
Reference: [4] Comfort, W. W., Remus, D.: Compact groups of Ulam-measurable cardinality: Partial converse theorems of Arkhangel'skii and Varopoulos.Math. Jap. 39 (1994), 203-210. MR 1270627
Reference: [5] Dierolf, P., Dierolf, S., Drewnowski, L.: Remarks and examples concerning unordered Baire-like and ultrabarrelled spaces.Colloq. Math. 39 (1978), 109-116. Zbl 0386.46008, MR 0507270, 10.4064/cm-39-1-109-116
Reference: [6] Drewnowski, L.: Resolutions of topological linear spaces and continuity of linear maps.J. Math. Anal. Appl. 335 (2007), 1177-1194. Zbl 1133.46002, MR 2346899, 10.1016/j.jmaa.2007.02.032
Reference: [7] Drewnowski, L.: The dimension and codimension of analytic subspaces in topological vector spaces, with applications to the constructions of some pathological topological vector spaces. Liège 1982 (unpublished Math. talk)..
Reference: [8] Drewnowski, L., Labuda, I.: Sequence $F$-spaces of $L_0$-type over submeasures of $\Bbb N$.(to appear).
Reference: [9] Kąkol, J., Pellicer, M. López: Compact coverings for Baire locally convex spaces.J. Math. Anal. Appl. 332 (2007), 965-974. MR 2324313, 10.1016/j.jmaa.2006.10.045
Reference: [10] Kelley, J. L., al., I. Namioka et: Linear Topological Spaces.Van Nostrand London (1963). Zbl 0115.09902, MR 0166578
Reference: [11] Kōmura, Y.: On linear topological spaces.Kumamoto J. Sci., Ser. A 5 (1962), 148-157. MR 0151817
Reference: [12] Nakamura, M.: On quasi-Suslin space and closed graph theorem.Proc. Japan Acad. 46 (1970), 514-517. MR 0282325
Reference: [13] Nakamura, M.: On closed graph theorem.Proc. Japan Acad. 46 (1970), 846-849. Zbl 0223.46008, MR 0291757
Reference: [14] Carreras, P. Perez, Bonet, J.: Barrelled Locally Convex Spaces, Vol. 131.North Holland Amsterdam (1987). MR 0880207
Reference: [15] Rogers, C. A., Jayne, J. E., Dellacherie, C., Topsøe, F., Hoffman-Jørgensen, J., Martin, D. A., Kechris, A. S., Stone, A. H.: Analytic Sets.Academic Press London (1980).
Reference: [16] Talagrand, M.: Espaces de Banach faiblement $K$-analytiques.Ann. Math. 110 (1979), 407-438. MR 0554378, 10.2307/1971232
Reference: [17] Tkachuk, V. V.: A space $C_p(X) $ is dominated by irrationals if and only if it is $K$-analytic.Acta Math. Hungar. 107 (2005), 253-265. Zbl 1081.54012, MR 2150789, 10.1007/s10474-005-0194-y
Reference: [18] Valdivia, M.: Topics in Locally Convex Spaces.North-Holland Amsterdam (1982). Zbl 0489.46001, MR 0671092
Reference: [19] Valdivia, M.: Quasi-LB-spaces.J. Lond. Math. Soc. 35 (1987), 149-168. Zbl 0625.46006, MR 0871772
.

Files

Files Size Format View
CzechMathJ_59-2009-4_20.pdf 257.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo