Previous |  Up |  Next

Article

Title: Modal operators on bounded residuated $\rm l$-monoids (English)
Author: Rachůnek, Jiří
Author: Šalounová, Dana
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 133
Issue: 3
Year: 2008
Pages: 299-311
Summary lang: English
.
Category: math
.
Summary: Bounded residuated lattice ordered monoids (${\rm R\ell}$-monoids) form a class of algebras which contains the class of Heyting algebras, i.e.\ algebras of the propositional intuitionistic logic, as well as the classes of algebras of important propositional fuzzy logics such as pseudo $\mathop{\rm MV}$-algebras (or, equivalently, $\mathop{\rm GMV}$-algebras) and pseudo $\mathop{\rm BL}$-algebras (and so, particularly, $\mathop{\rm MV}$-algebras and $\mathop{\rm BL}$-algebras). Modal operators on Heyting algebras were studied by Macnab (1981), on $\mathop{\rm MV}$-algebras were studied by Harlenderová and Rachůnek (2006) and on bounded commutative ${\rm R\ell}$-monoids in our paper which will apear in Math. Slovaca. Now we generalize modal operators to bounded ${\rm R\ell}$-monoids which need not be commutative and investigate their properties also for further derived algebras. (English)
Keyword: residuated {l}-monoid
Keyword: residuated lattice
Keyword: pseudo $\mathop{\rm BL}$-algebra
Keyword: pseudo $\mathop{\rm MV}$-algebra
MSC: 06D35
MSC: 06F05
idZBL: Zbl 1199.06043
idMR: MR2494783
DOI: 10.21136/MB.2008.140619
.
Date available: 2010-07-20T17:31:50Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140619
.
Reference: [1] Bahls, P., Cole, J., Galatos, N., Jipsen, P., Tsinakis, C.: Cancelative residuated lattices.Algebra Univers. 50 (2003), 83-106. MR 2026830
Reference: [2] Blount, K., Tsinakis, C.: The structure of residuated lattices.Int. J. Algebra Comput. 13 (2003), 437-461. Zbl 1048.06010, MR 2022118, 10.1142/S0218196703001511
Reference: [3] Ceterchi, R.: Pseudo-Wajsberg algebras.Multiple Val. Logic 6 (2001), 67-88. Zbl 1013.03074, MR 1817437
Reference: [4] Chang, C. C.: Algebraic analysis of many valued logic.Trans. Amer. Math. Soc. 88 (1958), 467-490. MR 0094302, 10.1090/S0002-9947-1958-0094302-9
Reference: [5] Cignoli, R., D'Ottaviano, I. M. L., Mundici, D.: Algebraic Foundation of Many-Valued Reasoning.Kluwer, Dordrecht (2000).
Reference: [6] Nola, A. Di, Georgescu, G., Iorgulescu, A.: Pseudo-BL algebras I.Multiple Val. Logic 8 (2002), 673-714. Zbl 1028.06007, MR 1948853
Reference: [7] Dvurečenskij, A., Rachůnek, J.: Probabilistic averaging in bounded Rl-monoids.Semigroup Forum 72 (2006), 190-206. MR 2216089, 10.1007/s00233-005-0545-6
Reference: [8] Dvurečenskij, A., Rachůnek, J.: On Riečan and Bosbach states for bounded Rl-monoids.Math. Slovaca 56 (2006), 487-500. MR 2293582
Reference: [9] Font, J. M., Rodriguez, A. J., Torrens, A.: Wajsberg algebras.Stochastica 8 (1984), 5-31. Zbl 0557.03040, MR 0780136
Reference: [10] Galatos, N., Tsinakis, C.: Generalized $\rm MV$-algebras.J. Algebra 283 (2005), 254-291. MR 2102083, 10.1016/j.jalgebra.2004.07.002
Reference: [11] Georgescu, G., Iorgulescu, A.: Pseudo-$\rm MV$ algebras.Multiple Val. Logic 6 (2001), 95-135. MR 1817439
Reference: [12] Georgescu, G., Leustean, L.: Some classes of pseudo-$\rm BL$ algebras.J. Austral. Math. Soc. 73 (2002), 127-153. MR 1916313, 10.1017/S144678870000851X
Reference: [13] Hájek, P.: Basic fuzzy logic and BL-algebras.Soft. Comput. 2 (1998), 124-128.
Reference: [14] Hájek, P.: Observations on non-commutative fuzzy logic.Soft. Comput. 8 (2003), 39-43. Zbl 1075.03009
Reference: [15] Harlenderová, M., Rachůnek, J.: Modal operators on $\rm MV$-algebras.Math. Bohem. 131 (2006), 39-48. MR 2211002
Reference: [16] Kovář, T.: A general theory of dually residuated lattice ordered monoids.PhD Thesis, Palacký University, Olomouc (1996).
Reference: [17] Kühr, J.: Dually residuated lattice-ordered monoids.PhD Thesis, Palacký University, Olomouc (2003). Zbl 1066.06008, MR 2070377
Reference: [18] Kühr, J.: Pseudo $\rm BL$-algebras and DRl-monoids.Math. Bohem. 128 (2003), 199-208. MR 1995573
Reference: [19] Leustean, I.: Non-commutative Łukasiewicz propositional logic.Arch. Math. Logic. 45 (2006), 191-213. Zbl 1096.03020, MR 2209743, 10.1007/s00153-005-0297-8
Reference: [20] Macnab, D. S.: Modal operators on Heyting algebras.Alg. Univ. 12 (1981), 5-29. Zbl 0459.06005, MR 0608645, 10.1007/BF02483860
Reference: [21] Rachůnek, J.: A duality between algebras of basic logic and bounded representable DRl-monoids.Math. Bohem. 26 (2001), 561-569. MR 1970259
Reference: [22] Rachůnek, J.: A non-commutative generalization of $\rm MV$-algebras.Czech. Math. J. 52 (2002), 255-273. MR 1905434, 10.1023/A:1021766309509
Reference: [23] Rachůnek, J., Šalounová, D.: Modal operators on bounded commutative residuated l-monoids.(to appear) in Math. Slovaca. MR 2357828
Reference: [24] Rachůnek, J., Šalounová, D.: A generalization of local fuzzy structures.Soft. Comput. 11 (2007), 565-571. Zbl 1121.06013
Reference: [25] Rachůnek, J., Slezák, V.: Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures.Math. Slovaca 56 (2006), 223-233. Zbl 1150.06015, MR 2229343
Reference: [26] Swamy, K. L. N.: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105-114. Zbl 0138.02104, MR 0183797, 10.1007/BF01360284
.

Files

Files Size Format View
MathBohem_133-2008-3_7.pdf 254.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo