Previous |  Up |  Next

Article

Keywords:
jets; higher order connections; Ehresmann prolongation; Weil functors; bundle functors; natural operators
Summary:
Let $F=F^{(A,H,t)}$ and $F^1=F^{(A^1,H^1,t^1)}$ be fiber product preserving bundle functors on the category $\mathcal {FM}_m$ of fibred manifolds $Y$ with $m$-dimensional bases and fibred maps covering local diffeomorphisms. We define a quasi-morphism $(A,H,t)\to (A^1,H^1,t^1)$ to be a $GL(m)$-invariant algebra homomorphism $\nu \colon A\to A^1$ with $t^1=\nu \circ t$. The main result is that there exists an $\mathcal {FM}_m$-natural transformation $FY\to F^1Y$ depending on a classical linear connection on the base of $Y$ if and only if there exists a quasi-morphism $(A,H,t)\to (A^1,H^1,t^1)$. As applications, we study existence problems of symmetrization (holonomization) of higher order jets and of holonomic prolongation of general connections.
References:
[1] Doupovec, M., Kolář, I.: Iteration of fiber product preserving bundle functors. Monatsh. Math. 134 (2001), 39-50. DOI 10.1007/s006050170010 | MR 1872045
[2] Doupovec, M., Mikulski, W. M.: Holonomic extension of connections and symmetrization of jets. Rep. Math. Phys. 60 (2007), 299-316. DOI 10.1016/S0034-4877(07)80141-8 | MR 2374824 | Zbl 1160.58001
[3] Doupovec, M., Mikulski, W. M.: Higher order jet involutions. Czech. Math. J. 57 (2007), 933-945. DOI 10.1007/s10587-007-0086-0 | MR 2356931
[4] Doupovec, M., Mikulski, W. M.: On the iteration of higher order jets and prolongation of connections. (to appear) in Ann. Pol. Math. MR 2741201
[5] Eck, D. J.: Product preserving functors on smooth manifolds. J. Pure Appl. Algebra 42 (1986), 133-140. DOI 10.1016/0022-4049(86)90076-9 | MR 0857563 | Zbl 0615.57019
[6] Ehresmann, C.: Extension du calcul des jets aux jets non holonomes. CRAS Paris 239 (1954), 1762-1764. MR 0066734 | Zbl 0057.15603
[7] Ehresmann, C.: Sur les connexions d'ordre supérieur. Atti del V. Cong. del' Unione Math. Ital., 1955, Roma Cremonese (1956), 344-346.
[8] Kainz, G., Michor, P. W.: Natural transformations in differential geometry. Czech. Math. J. 37 (1987), 584-607. MR 0913992 | Zbl 0654.58001
[9] Kolář, I.: On the torsion of spaces with connections. Czech. Math. J. 21 (1971), 124-136. MR 0293531
[10] Kolář, I.: The contact of spaces with connections. J. Diff. Geom. 7 (1972), 563-570. MR 0415660
[11] Kolář, I.: Weil bundles as generalized jet spaces. Handbook of Global Analysis, Demeter Krupka and David Saunders, 2008 Elsevier B.V. MR 2389643
[12] Kolář, I.: Higher order absolute differentiation with respect to generalized connections. Differential Geometry, Banach Center Publications 12 (1984), 153-161. MR 0961078
[13] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer-Verlag (1993). MR 1202431
[14] Kolář, I., Mikulski, W. M.: On the fiber product preserving bundle functors. Differential Geometry and Its Applications 11 (1999), 105-111. DOI 10.1016/S0926-2245(99)00022-4 | MR 1712139
[15] Leon, M. de, Rodrigues, P. R.: Generalized Classical Mechanics and Field Theory. North-Holland Math. Studies 112, 1985, Amsterdam. MR 0808964 | Zbl 0581.58015
[16] Libermann, P.: Introduction to the theory of semi-holonomic jets. Arch. Math (Brno) 33 (1996), 173-189. MR 1478771 | Zbl 0915.58004
[17] Luciano, O. O.: Categories of multiplicative functors and Weil's infinitely near points. Nagoya Math. J. 109 (1988), 69-89. MR 0931952 | Zbl 0661.58007
[18] Mangiarotti, I., Modugno, M.: Fibred spaces, jet spaces and connections for field theories. Proc. of Internat. Meeting ``Geometry and Physics'', Florence, 1982, Pitagora Editrice, Bologna 1983 135-165. MR 0760841
[19] Mikulski, W. M.: On prolongation of connections. Ann. Pol. Math 97(2) (2010), 101-121. DOI 10.4064/ap97-2-1 | MR 2570322 | Zbl 1191.58002
[20] Mikulski, W. M.: The natural operators lifting projectable vector fields to some fiber product preserving bundles. Ann. Pol. Math. 81(3) (2003), 261-271. DOI 10.4064/ap81-3-4 | MR 2044627 | Zbl 1099.58003
[21] Modugno, M.: Jet involutions and prolongation of connections. Časopis Pěst. Mat. 114 (1989), 356-365. MR 1027231
[22] Saunders, D. J.: The Geometry of Jet Bundles. London Math. Soc. Lecture Note Series 142, Cambridge Univ. Press (1989). MR 0989588 | Zbl 0665.58002
[23] Weil, A.: Théorie des points proches sur les variétes différientielles. In: Colloque de topol. et géom diff., Strasbourg, 1953 111-117. MR 0061455
[24] Vondra, A.: Higher-order differential equations represented by connections on prolongations of a fibred manifold. Extracta Math. 15 (2000), 421-512. MR 1825970
Partner of
EuDML logo