Previous |  Up |  Next

Article

Title: On symmetrization of jets (English)
Author: Mikulski, W. M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 1
Year: 2011
Pages: 157-168
Summary lang: English
.
Category: math
.
Summary: Let $F=F^{(A,H,t)}$ and $F^1=F^{(A^1,H^1,t^1)}$ be fiber product preserving bundle functors on the category $\mathcal {FM}_m$ of fibred manifolds $Y$ with $m$-dimensional bases and fibred maps covering local diffeomorphisms. We define a quasi-morphism $(A,H,t)\to (A^1,H^1,t^1)$ to be a $GL(m)$-invariant algebra homomorphism $\nu \colon A\to A^1$ with $t^1=\nu \circ t$. The main result is that there exists an $\mathcal {FM}_m$-natural transformation $FY\to F^1Y$ depending on a classical linear connection on the base of $Y$ if and only if there exists a quasi-morphism $(A,H,t)\to (A^1,H^1,t^1)$. As applications, we study existence problems of symmetrization (holonomization) of higher order jets and of holonomic prolongation of general connections. (English)
Keyword: jets
Keyword: higher order connections
Keyword: Ehresmann prolongation
Keyword: Weil functors
Keyword: bundle functors
Keyword: natural operators
MSC: 58A05
MSC: 58A20
MSC: 58A32
idZBL: Zbl 1224.58001
idMR: MR2782766
DOI: 10.1007/s10587-011-0004-3
.
Date available: 2011-05-23T12:38:33Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141525
.
Reference: [1] Doupovec, M., Kolář, I.: Iteration of fiber product preserving bundle functors.Monatsh. Math. 134 (2001), 39-50. MR 1872045, 10.1007/s006050170010
Reference: [2] Doupovec, M., Mikulski, W. M.: Holonomic extension of connections and symmetrization of jets.Rep. Math. Phys. 60 (2007), 299-316. Zbl 1160.58001, MR 2374824, 10.1016/S0034-4877(07)80141-8
Reference: [3] Doupovec, M., Mikulski, W. M.: Higher order jet involutions.Czech. Math. J. 57 (2007), 933-945. MR 2356931, 10.1007/s10587-007-0086-0
Reference: [4] Doupovec, M., Mikulski, W. M.: On the iteration of higher order jets and prolongation of connections.(to appear) in Ann. Pol. Math. MR 2741201
Reference: [5] Eck, D. J.: Product preserving functors on smooth manifolds.J. Pure Appl. Algebra 42 (1986), 133-140. Zbl 0615.57019, MR 0857563, 10.1016/0022-4049(86)90076-9
Reference: [6] Ehresmann, C.: Extension du calcul des jets aux jets non holonomes.CRAS Paris 239 (1954), 1762-1764. Zbl 0057.15603, MR 0066734
Reference: [7] Ehresmann, C.: Sur les connexions d'ordre supérieur.Atti del V. Cong. del' Unione Math. Ital., 1955, Roma Cremonese (1956), 344-346.
Reference: [8] Kainz, G., Michor, P. W.: Natural transformations in differential geometry.Czech. Math. J. 37 (1987), 584-607. Zbl 0654.58001, MR 0913992
Reference: [9] Kolář, I.: On the torsion of spaces with connections.Czech. Math. J. 21 (1971), 124-136. MR 0293531
Reference: [10] Kolář, I.: The contact of spaces with connections.J. Diff. Geom. 7 (1972), 563-570. MR 0415660, 10.4310/jdg/1214431173
Reference: [11] Kolář, I.: Weil bundles as generalized jet spaces.Handbook of Global Analysis, Demeter Krupka and David Saunders, 2008 Elsevier B.V. MR 2389643
Reference: [12] Kolář, I.: Higher order absolute differentiation with respect to generalized connections.Differential Geometry, Banach Center Publications 12 (1984), 153-161. MR 0961078, 10.4064/-12-1-153-161
Reference: [13] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry.Springer-Verlag (1993). MR 1202431
Reference: [14] Kolář, I., Mikulski, W. M.: On the fiber product preserving bundle functors.Differential Geometry and Its Applications 11 (1999), 105-111. MR 1712139, 10.1016/S0926-2245(99)00022-4
Reference: [15] Leon, M. de, Rodrigues, P. R.: Generalized Classical Mechanics and Field Theory.North-Holland Math. Studies 112, 1985, Amsterdam. Zbl 0581.58015, MR 0808964
Reference: [16] Libermann, P.: Introduction to the theory of semi-holonomic jets.Arch. Math (Brno) 33 (1996), 173-189. Zbl 0915.58004, MR 1478771
Reference: [17] Luciano, O. O.: Categories of multiplicative functors and Weil's infinitely near points.Nagoya Math. J. 109 (1988), 69-89. Zbl 0661.58007, MR 0931952, 10.1017/S0027763000002774
Reference: [18] Mangiarotti, I., Modugno, M.: Fibred spaces, jet spaces and connections for field theories.Proc. of Internat. Meeting ``Geometry and Physics'', Florence, 1982, Pitagora Editrice, Bologna 1983 135-165. MR 0760841
Reference: [19] Mikulski, W. M.: On prolongation of connections.Ann. Pol. Math 97(2) (2010), 101-121. Zbl 1191.58002, MR 2570322, 10.4064/ap97-2-1
Reference: [20] Mikulski, W. M.: The natural operators lifting projectable vector fields to some fiber product preserving bundles.Ann. Pol. Math. 81(3) (2003), 261-271. Zbl 1099.58003, MR 2044627, 10.4064/ap81-3-4
Reference: [21] Modugno, M.: Jet involutions and prolongation of connections.Časopis Pěst. Mat. 114 (1989), 356-365. MR 1027231
Reference: [22] Saunders, D. J.: The Geometry of Jet Bundles.London Math. Soc. Lecture Note Series 142, Cambridge Univ. Press (1989). Zbl 0665.58002, MR 0989588
Reference: [23] Weil, A.: Théorie des points proches sur les variétes différientielles.In: Colloque de topol. et géom diff., Strasbourg, 1953 111-117. MR 0061455
Reference: [24] Vondra, A.: Higher-order differential equations represented by connections on prolongations of a fibred manifold.Extracta Math. 15 (2000), 421-512. MR 1825970
.

Files

Files Size Format View
CzechMathJ_61-2011-1_13.pdf 288.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo