Previous |  Up |  Next

Article

Keywords:
a priori estimates; Liouville theorems; blow-up rate; positive solution; indefinite parabolic problem
Summary:
In this paper we establish new nonlinear Liouville theorems for parabolic problems on half spaces. Based on the Liouville theorems, we derive estimates for the blow-up of positive solutions of indefinite parabolic problems and investigate the complete blow-up of these solutions. We also discuss a priori estimates for indefinite elliptic problems.
References:
[1] Ackermann, N., Bartsch, T., Kaplický, P., Quittner, P.: A priori bounds, nodal equilibria and connecting orbits in indefinite superlinear parabolic problems. Trans. Am. Math. Soc. 360 (2008), 3493-3539. DOI 10.1090/S0002-9947-08-04404-8 | MR 2386234
[2] Amann, H.: Existence and regularity for semilinear parabolic evolution equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 11 (1984), 593-676. MR 0808425 | Zbl 0625.35045
[3] Andreucci, D., DiBenedetto, E.: On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 18 (1991), 363-441. MR 1145316
[4] Baras, P., Cohen, L.: Complete blow-up after {$T\sb { max}$} for the solution of a semilinear heat equation. J. Funct. Anal. 71 (1987), 142-174. DOI 10.1016/0022-1236(87)90020-6 | MR 0879705 | Zbl 0653.35037
[5] Bidaut-Véron, M. F.: Initial blow-up for the solutions of a semilinear parabolic equation with source term. In: Équations aux dérivées partielles et applications 189-198 Gauthier-Villars, Éd. Sci. Méd. Elsevier Paris (1998). MR 1648222
[6] Cabré, X.: On the Alexandroff-Bakel man-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations. Commun. Pure Appl. Math. 48 (1995), 539-570. DOI 10.1002/cpa.3160480504 | MR 1329831
[7] Du, Y., Li, S.: Nonlinear Liouville theorems and a priori estimates for indefinite superlinear elliptic equations. Adv. Diff. Equ. 10 (2005), 841-860. MR 2150868 | Zbl 1161.35388
[8] Farina, A.: Liouville-type theorems for elliptic problems. Handbook of differential equations: Stationary partial differential equations, Vol. {IV} M. Chipot 60-116 Elsevier/North-Holland Amsterdam (2007). MR 2569331 | Zbl 1191.35128
[9] Fila, M., Souplet, P.: The blow-up rate for semilinear parabolic problems on general domains. NoDEA Nonlinear Differ. Equ. Appl. 8 (2001), 473-480. DOI 10.1007/PL00001459 | MR 1867324 | Zbl 0993.35046
[10] Fila, M., Souplet, P., Weissler, F. B.: Linear and nonlinear heat equations in {$L\sp q\sb \delta$} spaces and universal bounds for global solutions. Math. Ann. 320 (2001), 87-113. DOI 10.1007/PL00004471 | MR 1835063
[11] Friedman, A., McLeod, B.: Blow-up of positive solutions of semilinear heat equations. Indiana Univ. Math. J. 34 (1985), 425-447. DOI 10.1512/iumj.1985.34.34025 | MR 0783924 | Zbl 0576.35068
[12] Gidas, B., Spruck, J.: A priori bounds for positive solutions of nonlinear elliptic equations. Commun. Partial Differ. Equations 6 (1981), 883-901. DOI 10.1080/03605308108820196 | MR 0619749 | Zbl 0462.35041
[13] Giga, Y., Kohn, R. V.: Characterizing blowup using similarity variables. Indiana Univ. Math. J. 36 (1987), 1-40. DOI 10.1512/iumj.1987.36.36001 | MR 0876989 | Zbl 0601.35052
[14] Giga, Y., Matsui, S., Sasayama, S.: Blow up rate for semilinear heat equations with subcritical nonlinearity. Indiana Univ. Math. J. 53 (2004), 483-514. DOI 10.1512/iumj.2004.53.2401 | MR 2060042 | Zbl 1058.35096
[15] Giga, Y., Matsui, S., Sasayama, S.: On blow-up rate for sign-changing solutions in a convex domain. Math. Methods Appl. Sci. 27 (2004), 1771-1782. DOI 10.1002/mma.562 | MR 2087296 | Zbl 1066.35043
[16] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer Berlin (2001). Reprint of the 1998 edition. MR 1814364
[17] Herrero, M. A., Velázquez, J. J. L.: Blow-up behaviour of one-dimensional semilinear parabolic equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 10 (1993), 131-189. MR 1220032
[18] Krylov, N. V.: Nonlinear Elliptic and Parabolic Equations of the Second Order. Mathematics and its Applications (Soviet Series). Vol. 7. D. Reidel Publishing Co. Dordrecht (1987). MR 0901759
[19] Lieberman, G. M.: Second Order Parabolic Differential Equations. World Scientific Publishing Co. River Edge, NJ (1996). MR 1465184 | Zbl 0884.35001
[20] López-Gómez, J., Quittner, P.: Complete and energy blow-up in indefinite superlinear parabolic problems. Discrete Contin. Dyn. Syst. 14 (2006), 169-186. MR 2170308
[21] Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications. Vol. 16. Birkhäuser Basel (1995). MR 1329547
[22] Merle, F., Zaag, H.: Optimal estimates for blowup rate and behavior for nonlinear heat equations. Commun. Pure Appl. Math. 51 (1998), 139-196. DOI 10.1002/(SICI)1097-0312(199802)51:2<139::AID-CPA2>3.0.CO;2-C | MR 1488298 | Zbl 0899.35044
[23] Poláčik, P., Quittner, P.: Liouville type theorems and complete blow-up for indefinite superlinear parabolic equations. In: Nonlinear elliptic and parabolic problems. Progr. Nonlinear Differential Equations Appl., Vol. 64 391-402 Birkhäuser Basel (2005). DOI 10.1007/3-7643-7385-7_22 | MR 2185228
[24] Poláčik, P., Quittner, P.: A Liouville-type theorem and the decay of radial solutions of a semilinear heat equation. Nonlinear Anal. 64 (2006), 1679-1689. MR 2197355
[25] Poláčik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems. Duke Math. J. 139 (2007), 555-579. DOI 10.1215/S0012-7094-07-13935-8 | MR 2350853
[26] Poláčik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems. {II}. Parabolic equations. Indiana Univ. Math. J. 56 (2007), 879-908. DOI 10.1512/iumj.2007.56.2911 | MR 2317549
[27] Quittner, P., Simondon, F.: A priori bounds and complete blow-up of positive solutions of indefinite superlinear parabolic problems. J. Math. Anal. Appl. 304 (2005), 614-631. DOI 10.1016/j.jmaa.2004.09.044 | MR 2126555 | Zbl 1071.35026
[28] Quittner, P., Souplet, P.: Superlinear parabolic problems. Blow-up, global existence and steady states. Birkhäuser Advanced Texts: Basel Textbooks. Birkhäuser Basel (2007). MR 2346798
[29] Quittner, P., Souplet, P., Winkler, M.: Initial blow-up rates and universal bounds for nonlinear heat equations. J. Differ. Equations 196 (2004), 316-339. DOI 10.1016/j.jde.2003.10.007 | MR 2028111 | Zbl 1044.35027
[30] Serrin, J.: Entire solutions of nonlinear Poisson equations. Proc. London. Math. Soc. (3) 24 (1972), 348-366. DOI 10.1112/plms/s3-24.2.348 | MR 0289961 | Zbl 0229.35035
[31] Serrin, J.: Entire solutions of quasilinear elliptic equations. J. Math. Anal. Appl. 352 (2009), 3-14. DOI 10.1016/j.jmaa.2008.10.036 | MR 2499881 | Zbl 1180.35243
[32] Taliaferro, S. D.: Isolated singularities of nonlinear parabolic inequalities. Math. Ann. 338 (2007), 555-586. DOI 10.1007/s00208-007-0088-0 | MR 2317931 | Zbl 1120.35003
[33] Taliaferro, S. D.: Blow-up of solutions of nonlinear parabolic inequalities. Trans. Amer. Math. Soc. 361 (2009), 3289-3302. DOI 10.1090/S0002-9947-09-04770-9 | MR 2485427 | Zbl 1175.35072
[34] Weissler, F. B.: Single point blow-up for a semilinear initial value problem. J. Differ. Equations 55 (1984), 204-224. DOI 10.1016/0022-0396(84)90081-0 | MR 0764124 | Zbl 0555.35061
[35] Weissler, F. B.: An {$L\sp \infty$} blow-up estimate for a nonlinear heat equation. Commun. Pure Appl. Math. 38 (1985), 291-295. DOI 10.1002/cpa.3160380303 | MR 0784475 | Zbl 0592.35071
[36] Xing, R.: The blow-up rate for positive solutions of indefinite parabolic problems and related Liouville type theorems. Acta Math. Sin. (Engl. Ser.) 25 (2009), 503-518. DOI 10.1007/s10114-008-5615-8 | MR 2495531 | Zbl 1180.35147
Partner of
EuDML logo