Title:
|
Nonlocal Cauchy problems and their controllability for semilinear differential inclusions with lower Scorza-Dragoni nonlinearities (English) |
Author:
|
Cardinali, Tiziana |
Author:
|
Portigiani, Francesco |
Author:
|
Rubbioni, Paola |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
61 |
Issue:
|
1 |
Year:
|
2011 |
Pages:
|
225-245 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we prove the existence of mild solutions and the controllability for semilinear differential inclusions with nonlocal conditions. Our results extend some recent theorems. (English) |
Keyword:
|
nonlocal conditions |
Keyword:
|
semilinear differential inclusions |
Keyword:
|
selection theorem |
Keyword:
|
mild solutions |
Keyword:
|
lower Scorza-Dragoni property |
Keyword:
|
controllability |
MSC:
|
34G25 |
MSC:
|
34H05 |
MSC:
|
93B05 |
idZBL:
|
Zbl 1224.34195 |
idMR:
|
MR2782771 |
DOI:
|
10.1007/s10587-011-0009-y |
. |
Date available:
|
2011-05-23T12:44:45Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141530 |
. |
Reference:
|
[1] Abraham, R., Marsden, J. E., Ratiu, T. S.: Manifolds, Tensor Analysis, and Applications.Second Edition, Springer-Verlag, New York (1988). Zbl 0875.58002, MR 0960687 |
Reference:
|
[2] Al-Omair, R. A., Ibrahim, A. G.: Existence of mild solutions of a semilinear evolution differential inclusion with nonlocal conditions.Electron. J. Differential Equations 42 (2009), 11 pp. MR 2495847 |
Reference:
|
[3] Balachandran, K., Dauer, J. P.: Controllability of nonlinear systems in Banach spaces: a survey.J. Optim. Theory Appl. 115 (2002), 7-28. Zbl 1023.93010, MR 1937343, 10.1023/A:1019668728098 |
Reference:
|
[4] Boulite, S., Idrissi, A., Maniar, L.: Controllability of semilinear boundary problems with nonlocal initial conditions.J. Math. Anal. Appl. 316 (2006), 566-578. Zbl 1105.34036, MR 2206690, 10.1016/j.jmaa.2005.05.006 |
Reference:
|
[5] Bressan, A., Colombo, G.: Extensions and selections of maps with decomposable values.Studia Math. 90 (1988), 69-85. Zbl 0677.54013, MR 0947921, 10.4064/sm-90-1-69-86 |
Reference:
|
[6] Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem.J. Math. Anal. Appl. 162 (1991), 494-505. Zbl 0748.34040, MR 1137634, 10.1016/0022-247X(91)90164-U |
Reference:
|
[7] Cardinali, T., Panfili, S.: Global mild solutions for semilinear differential inclusions and applications to impulsive problems.PU.M.A. 19 (2008), 1-19. MR 2551816 |
Reference:
|
[8] Cardinali, T., Portigiani, F., Rubbioni, P.: Local mild solutions and impulsive mild solutions for semilinear Cauchy problems involving lower Scorza-Dragoni multifunctions.Topol. Methods Nonlinear Anal. 32 (2008), 247-259. Zbl 1193.34123, MR 2494057 |
Reference:
|
[9] Chang, Y.-K., Li, W.-T., Nieto, J. J.: Controllability of evolution differential inclusions in Banach spaces.Nonlinear Anal. 67 (2007), 623-632. Zbl 1128.93005, MR 2317194, 10.1016/j.na.2006.06.018 |
Reference:
|
[10] Górniewicz, L., Ntouyas, S. K., O'Regan, D.: Existence results for first and second order semilinear differential inclusions with nonlocal conditions.J. Comput. Anal. Appl. 9 (2007), 287-310. MR 2300434 |
Reference:
|
[11] Górniewicz, L., Ntouyas, S. K., O'Regan, D.: Controllability of semilinear differential equations and inclusions via semigroup theory in Banach spaces.Rep. Math. Phys. 56 (2005), 437-470. MR 2190735, 10.1016/S0034-4877(05)80096-5 |
Reference:
|
[12] Hernández, E. M., O'Regan, D.: Controllability of Volterra-Fredholm type systems in Banach spaces.J. Franklin Inst. 346 (2009), 95-101. MR 2499965, 10.1016/j.jfranklin.2008.08.001 |
Reference:
|
[13] Hu, S., Papageorgiou, N. S.: Handbook of Multivalued Analysis. Vol. I: Theory. Mathematics and its Applications, 419.Kluwer Academic Publishers, Dordrecht (1997). MR 1485775 |
Reference:
|
[14] Hu, S., Papageorgiou, N. S.: Handbook of Multivalued Analysis. Vol. II: Applications.Mathematics and its Applications, 500 Kluwer Academic Publishers, Dordrecht (2000). MR 1741926 |
Reference:
|
[15] Kamenskii, M., Obukhovskii, V. V., Zecca, P.: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Series in Nonlinear Analysis and Applications, 7.Berlin: de Gruyter (2001). MR 1831201 |
Reference:
|
[16] Krein, S. G.: Linear Differential Equations in Banach Spaces.Amer. Math. Soc., Providence (1971). MR 0342804 |
Reference:
|
[17] Li, G., Xue, X.: Controllability of evolution inclusions with nonlocal conditions.Appl. Math. Comput. 141 (2003), 375-384. Zbl 1029.93003, MR 1972917, 10.1016/S0096-3003(02)00262-X |
Reference:
|
[18] Michael, E.: Continuous selections I.Ann. Math. 63 (1956), 361-382. Zbl 0071.15902, MR 0077107, 10.2307/1969615 |
Reference:
|
[19] Royden, H. L.: Real Analysis.Macmillan Publishing Company, New York (1988). Zbl 0704.26006, MR 1013117 |
Reference:
|
[20] Sussman, H. J.: Needle variations and almost lower semicontinuous differential inclusions.Set-Valued Analysis 10 (2002), 233-285. MR 1926382, 10.1023/A:1016540217523 |
Reference:
|
[21] Taylor, A. E., Lay, D. C.: Introduction to Functional Analysis.Robert E. Krieger Publishing Co., Inc., Malabar, FL (1986). Zbl 0654.46002, MR 0862116 |
Reference:
|
[22] Tolstonogov, A.: Differential Inclusions in a Banach Space.Kluwer Academic Publishers, Dordrecht (2000). Zbl 1021.34002, MR 1888331 |
Reference:
|
[23] Zhu, L., Li, G.: On a nonlocal problem for semilinear differential equations with upper semicontinuous nonlinearities in general Banach spaces.J. Math. Anal. Appl. 341 (2008), 660-675. Zbl 1145.34034, MR 2394114, 10.1016/j.jmaa.2007.10.041 |
. |