Previous |  Up |  Next

Article

Title: Nonlocal Cauchy problems and their controllability for semilinear differential inclusions with lower Scorza-Dragoni nonlinearities (English)
Author: Cardinali, Tiziana
Author: Portigiani, Francesco
Author: Rubbioni, Paola
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 1
Year: 2011
Pages: 225-245
Summary lang: English
.
Category: math
.
Summary: In this paper we prove the existence of mild solutions and the controllability for semilinear differential inclusions with nonlocal conditions. Our results extend some recent theorems. (English)
Keyword: nonlocal conditions
Keyword: semilinear differential inclusions
Keyword: selection theorem
Keyword: mild solutions
Keyword: lower Scorza-Dragoni property
Keyword: controllability
MSC: 34G25
MSC: 34H05
MSC: 93B05
idZBL: Zbl 1224.34195
idMR: MR2782771
DOI: 10.1007/s10587-011-0009-y
.
Date available: 2011-05-23T12:44:45Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141530
.
Reference: [1] Abraham, R., Marsden, J. E., Ratiu, T. S.: Manifolds, Tensor Analysis, and Applications.Second Edition, Springer-Verlag, New York (1988). Zbl 0875.58002, MR 0960687
Reference: [2] Al-Omair, R. A., Ibrahim, A. G.: Existence of mild solutions of a semilinear evolution differential inclusion with nonlocal conditions.Electron. J. Differential Equations 42 (2009), 11 pp. MR 2495847
Reference: [3] Balachandran, K., Dauer, J. P.: Controllability of nonlinear systems in Banach spaces: a survey.J. Optim. Theory Appl. 115 (2002), 7-28. Zbl 1023.93010, MR 1937343, 10.1023/A:1019668728098
Reference: [4] Boulite, S., Idrissi, A., Maniar, L.: Controllability of semilinear boundary problems with nonlocal initial conditions.J. Math. Anal. Appl. 316 (2006), 566-578. Zbl 1105.34036, MR 2206690, 10.1016/j.jmaa.2005.05.006
Reference: [5] Bressan, A., Colombo, G.: Extensions and selections of maps with decomposable values.Studia Math. 90 (1988), 69-85. Zbl 0677.54013, MR 0947921, 10.4064/sm-90-1-69-86
Reference: [6] Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem.J. Math. Anal. Appl. 162 (1991), 494-505. Zbl 0748.34040, MR 1137634, 10.1016/0022-247X(91)90164-U
Reference: [7] Cardinali, T., Panfili, S.: Global mild solutions for semilinear differential inclusions and applications to impulsive problems.PU.M.A. 19 (2008), 1-19. MR 2551816
Reference: [8] Cardinali, T., Portigiani, F., Rubbioni, P.: Local mild solutions and impulsive mild solutions for semilinear Cauchy problems involving lower Scorza-Dragoni multifunctions.Topol. Methods Nonlinear Anal. 32 (2008), 247-259. Zbl 1193.34123, MR 2494057
Reference: [9] Chang, Y.-K., Li, W.-T., Nieto, J. J.: Controllability of evolution differential inclusions in Banach spaces.Nonlinear Anal. 67 (2007), 623-632. Zbl 1128.93005, MR 2317194, 10.1016/j.na.2006.06.018
Reference: [10] Górniewicz, L., Ntouyas, S. K., O'Regan, D.: Existence results for first and second order semilinear differential inclusions with nonlocal conditions.J. Comput. Anal. Appl. 9 (2007), 287-310. MR 2300434
Reference: [11] Górniewicz, L., Ntouyas, S. K., O'Regan, D.: Controllability of semilinear differential equations and inclusions via semigroup theory in Banach spaces.Rep. Math. Phys. 56 (2005), 437-470. MR 2190735, 10.1016/S0034-4877(05)80096-5
Reference: [12] Hernández, E. M., O'Regan, D.: Controllability of Volterra-Fredholm type systems in Banach spaces.J. Franklin Inst. 346 (2009), 95-101. MR 2499965, 10.1016/j.jfranklin.2008.08.001
Reference: [13] Hu, S., Papageorgiou, N. S.: Handbook of Multivalued Analysis. Vol. I: Theory. Mathematics and its Applications, 419.Kluwer Academic Publishers, Dordrecht (1997). MR 1485775
Reference: [14] Hu, S., Papageorgiou, N. S.: Handbook of Multivalued Analysis. Vol. II: Applications.Mathematics and its Applications, 500 Kluwer Academic Publishers, Dordrecht (2000). MR 1741926
Reference: [15] Kamenskii, M., Obukhovskii, V. V., Zecca, P.: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Series in Nonlinear Analysis and Applications, 7.Berlin: de Gruyter (2001). MR 1831201
Reference: [16] Krein, S. G.: Linear Differential Equations in Banach Spaces.Amer. Math. Soc., Providence (1971). MR 0342804
Reference: [17] Li, G., Xue, X.: Controllability of evolution inclusions with nonlocal conditions.Appl. Math. Comput. 141 (2003), 375-384. Zbl 1029.93003, MR 1972917, 10.1016/S0096-3003(02)00262-X
Reference: [18] Michael, E.: Continuous selections I.Ann. Math. 63 (1956), 361-382. Zbl 0071.15902, MR 0077107, 10.2307/1969615
Reference: [19] Royden, H. L.: Real Analysis.Macmillan Publishing Company, New York (1988). Zbl 0704.26006, MR 1013117
Reference: [20] Sussman, H. J.: Needle variations and almost lower semicontinuous differential inclusions.Set-Valued Analysis 10 (2002), 233-285. MR 1926382, 10.1023/A:1016540217523
Reference: [21] Taylor, A. E., Lay, D. C.: Introduction to Functional Analysis.Robert E. Krieger Publishing Co., Inc., Malabar, FL (1986). Zbl 0654.46002, MR 0862116
Reference: [22] Tolstonogov, A.: Differential Inclusions in a Banach Space.Kluwer Academic Publishers, Dordrecht (2000). Zbl 1021.34002, MR 1888331
Reference: [23] Zhu, L., Li, G.: On a nonlocal problem for semilinear differential equations with upper semicontinuous nonlinearities in general Banach spaces.J. Math. Anal. Appl. 341 (2008), 660-675. Zbl 1145.34034, MR 2394114, 10.1016/j.jmaa.2007.10.041
.

Files

Files Size Format View
CzechMathJ_61-2011-1_18.pdf 329.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo