Previous |  Up |  Next

Article

Title: Properties of distance functions on convex surfaces and applications (English)
Author: Rataj, Jan
Author: Zajíček, Luděk
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 1
Year: 2011
Pages: 247-269
Summary lang: English
.
Category: math
.
Summary: If $X$ is a convex surface in a Euclidean space, then the squared intrinsic distance function $\mathop {{\rm dist}}^2(x,y)$ is DC (d.c., delta-convex) on $X\times X$ in the only natural extrinsic sense. An analogous result holds for the squared distance function $\mathop {{\rm dist}}^2(x,F)$ from a closed set $F \subset X$. Applications concerning $r$-boundaries (distance spheres) and ambiguous loci (exoskeletons) of closed subsets of a convex surface are given. (English)
Keyword: distance function
Keyword: convex surface
Keyword: Alexandrov space
Keyword: DC manifold
Keyword: ambiguous locus
Keyword: skeleton
Keyword: $r$-boundary
MSC: 52A20
MSC: 53C45
idZBL: Zbl 1224.53105
idMR: MR2782772
DOI: 10.1007/s10587-011-0010-5
.
Date available: 2011-05-23T12:46:29Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141531
.
Reference: [1] Aleksandrov, A. D.: Intrinsic Geometry of Convex Surfaces.OGIZ Moscow-Leningrad (1948), Russian. MR 0029518
Reference: [2] Aleksandrov, A. D.: On surfaces represented as the difference of convex functions.Izv. Akad. Nauk. Kaz. SSR 60, Ser. Math. Mekh. 3 (1949), 3-20 Russian. MR 0048059
Reference: [3] Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Graduate Studies in Mathematics, Vol. 33.American Mathematical Society (AMS) Providence (2001). MR 1835418, 10.1090/gsm/033
Reference: [4] Buyalo, S. V.: Shortest arcs on convex hypersurfaces of Riemannian spaces.Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 66 (1976), 114-132 Russian. MR 0643664
Reference: [5] Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control. Progress in Nonlinear Differential Equations and Their Applications, 58.Birkhäuser Boston (2004). MR 2041617
Reference: [6] Ferry, S.: When $\varepsilon $-boundaries are manifolds.Fund. Math. 90 (1976), 199-210. Zbl 0324.57003, MR 0413112, 10.4064/fm-90-3-199-210
Reference: [7] Fu, J. H. G.: Tubular neighborhoods in Euclidean spaces.Duke Math. J. 52 (1985), 1025-1046. Zbl 0592.52002, MR 0816398, 10.1215/S0012-7094-85-05254-8
Reference: [8] Hartman, P.: On functions representable as a difference of convex functions.Pac. J. Math. 9 (1959), 707-713. Zbl 0093.06401, MR 0110773, 10.2140/pjm.1959.9.707
Reference: [9] Hug, D., Last, G., Weil, W.: A local Steiner-type formula for general closed sets and applications.Math. Z. 246 (2004), 237-272. Zbl 1059.53061, MR 2031455
Reference: [10] Kuwae, K., Machigashira, Y., Shioya, T.: Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces.Math. Z. 238 (2001), 269-316. Zbl 1001.53017, MR 1865418, 10.1007/s002090100252
Reference: [11] Mantegazza, C., Mennucci, A. C.: Hamilton-Jacobi equations and distance functions on Riemannian manifolds.Appl. Math. Optimization 47 (2003), 1-25. MR 1941909, 10.1007/s00245-002-0736-4
Reference: [12] Milka, A. D.: Shortest arcs on convex surfaces.Dokl. Akad. Nauk SSSR 248 (1979), 34-36 Russian. Zbl 0441.53047, MR 0549365
Reference: [13] Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation I. Basic Theory. Grundlehren der Mathematischen Wissenschaften 330.Springer Berlin (2006). MR 2191744
Reference: [14] Otsu, Y., Shioya, T.: The Riemannian structure of Alexandrov spaces.J. Differ. Geom. 39 (1994), 629-658. Zbl 0808.53061, MR 1274133, 10.4310/jdg/1214455075
Reference: [15] Perelman, G.: DC structure on Alexandrov space.Unpublished preprint (1995), available at www.math.psu.edu/petrunin/papers/alexandrov/Cstructure.pdf.
Reference: [16] Petrunin, A.: Semiconcave functions in Alexandrov's geometry.In: Surveys in Differential Geometry, Vol. XI J. Cheeger, K. Grove International Press Somerville (2007), 137-201. Zbl 1166.53001, MR 2408266
Reference: [17] Plaut, C.: Metric spaces of curvature $\geq k$.In: Handbook of Geometric Topology Elsevier Amsterdam (2002), 819-898. Zbl 1011.57002, MR 1886682
Reference: [18] Rataj, J., Zajíček, L.: Critical values and level sets of distance functions in Riemannian, Alexandrov and Minkowski spaces.arXiv 0911.4020.
Reference: [19] Reshetnyak, Yu. G.: On a generalization of convex surfaces.Math. Sb., N. Ser. 40 (1956), 381-398 Russian. MR 0083757
Reference: [20] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory.Cambrigde University Press Cambrigde (1993). Zbl 0798.52001, MR 1216521
Reference: [21] Shiohama, K., Tanaka, M.: Cut loci and distance spheres on Alexandrov surfaces.In: Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Sémin. Congr., 1, A. L. Besse Société Mathématique de France Paris (1996), 531-559. Zbl 0874.53032, MR 1427770
Reference: [22] Veselý, L., Zajíček, L.: Delta-convex mappings between Banach spaces and applications.Diss. Math. Vol. 289 (1989). MR 1016045
Reference: [23] Walter, R.: Some analytical properties of geodesically convex sets.Abh. Math. Semin. Univ. Hamb. 45 (1976), 263-282. Zbl 0332.53026, MR 0417984, 10.1007/BF02992922
Reference: [24] Whitehead, J. H. C.: Manifolds with transverse fields in Euclidean space.Ann. Math. 73 (1961), 154-212. Zbl 0096.37802, MR 0124917, 10.2307/1970286
Reference: [25] Zajíček, L.: On the differentiation of convex functions in finite and infinite dimensional spaces.Czechoslovak Math. J. 29 (1979), 340-348. MR 0536060
Reference: [26] Zajíček, L.: Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space.Czechoslovak Math. J. 33 (1983), 292-308. MR 0699027
Reference: [27] Zajíček, L.: On Lipschitz and d.c. surfaces of finite codimension in a Banach space.Czechoslovak Math. J. 58 (2008), 849-864. MR 2455942, 10.1007/s10587-008-0055-2
Reference: [28] Zamfirescu, T.: On the cut locus in Alexandrov spaces and applications to convex surfaces.Pac. J. Math. 217 (2004), 375-386. Zbl 1068.53048, MR 2109940, 10.2140/pjm.2004.217.375
.

Files

Files Size Format View
CzechMathJ_61-2011-1_19.pdf 366.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo