Title:
|
Properties of distance functions on convex surfaces and applications (English) |
Author:
|
Rataj, Jan |
Author:
|
Zajíček, Luděk |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
61 |
Issue:
|
1 |
Year:
|
2011 |
Pages:
|
247-269 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
If $X$ is a convex surface in a Euclidean space, then the squared intrinsic distance function $\mathop {{\rm dist}}^2(x,y)$ is DC (d.c., delta-convex) on $X\times X$ in the only natural extrinsic sense. An analogous result holds for the squared distance function $\mathop {{\rm dist}}^2(x,F)$ from a closed set $F \subset X$. Applications concerning $r$-boundaries (distance spheres) and ambiguous loci (exoskeletons) of closed subsets of a convex surface are given. (English) |
Keyword:
|
distance function |
Keyword:
|
convex surface |
Keyword:
|
Alexandrov space |
Keyword:
|
DC manifold |
Keyword:
|
ambiguous locus |
Keyword:
|
skeleton |
Keyword:
|
$r$-boundary |
MSC:
|
52A20 |
MSC:
|
53C45 |
idZBL:
|
Zbl 1224.53105 |
idMR:
|
MR2782772 |
DOI:
|
10.1007/s10587-011-0010-5 |
. |
Date available:
|
2011-05-23T12:46:29Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141531 |
. |
Reference:
|
[1] Aleksandrov, A. D.: Intrinsic Geometry of Convex Surfaces.OGIZ Moscow-Leningrad (1948), Russian. MR 0029518 |
Reference:
|
[2] Aleksandrov, A. D.: On surfaces represented as the difference of convex functions.Izv. Akad. Nauk. Kaz. SSR 60, Ser. Math. Mekh. 3 (1949), 3-20 Russian. MR 0048059 |
Reference:
|
[3] Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Graduate Studies in Mathematics, Vol. 33.American Mathematical Society (AMS) Providence (2001). MR 1835418, 10.1090/gsm/033 |
Reference:
|
[4] Buyalo, S. V.: Shortest arcs on convex hypersurfaces of Riemannian spaces.Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 66 (1976), 114-132 Russian. MR 0643664 |
Reference:
|
[5] Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control. Progress in Nonlinear Differential Equations and Their Applications, 58.Birkhäuser Boston (2004). MR 2041617 |
Reference:
|
[6] Ferry, S.: When $\varepsilon $-boundaries are manifolds.Fund. Math. 90 (1976), 199-210. Zbl 0324.57003, MR 0413112, 10.4064/fm-90-3-199-210 |
Reference:
|
[7] Fu, J. H. G.: Tubular neighborhoods in Euclidean spaces.Duke Math. J. 52 (1985), 1025-1046. Zbl 0592.52002, MR 0816398, 10.1215/S0012-7094-85-05254-8 |
Reference:
|
[8] Hartman, P.: On functions representable as a difference of convex functions.Pac. J. Math. 9 (1959), 707-713. Zbl 0093.06401, MR 0110773, 10.2140/pjm.1959.9.707 |
Reference:
|
[9] Hug, D., Last, G., Weil, W.: A local Steiner-type formula for general closed sets and applications.Math. Z. 246 (2004), 237-272. Zbl 1059.53061, MR 2031455 |
Reference:
|
[10] Kuwae, K., Machigashira, Y., Shioya, T.: Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces.Math. Z. 238 (2001), 269-316. Zbl 1001.53017, MR 1865418, 10.1007/s002090100252 |
Reference:
|
[11] Mantegazza, C., Mennucci, A. C.: Hamilton-Jacobi equations and distance functions on Riemannian manifolds.Appl. Math. Optimization 47 (2003), 1-25. MR 1941909, 10.1007/s00245-002-0736-4 |
Reference:
|
[12] Milka, A. D.: Shortest arcs on convex surfaces.Dokl. Akad. Nauk SSSR 248 (1979), 34-36 Russian. Zbl 0441.53047, MR 0549365 |
Reference:
|
[13] Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation I. Basic Theory. Grundlehren der Mathematischen Wissenschaften 330.Springer Berlin (2006). MR 2191744 |
Reference:
|
[14] Otsu, Y., Shioya, T.: The Riemannian structure of Alexandrov spaces.J. Differ. Geom. 39 (1994), 629-658. Zbl 0808.53061, MR 1274133, 10.4310/jdg/1214455075 |
Reference:
|
[15] Perelman, G.: DC structure on Alexandrov space.Unpublished preprint (1995), available at www.math.psu.edu/petrunin/papers/alexandrov/Cstructure.pdf. |
Reference:
|
[16] Petrunin, A.: Semiconcave functions in Alexandrov's geometry.In: Surveys in Differential Geometry, Vol. XI J. Cheeger, K. Grove International Press Somerville (2007), 137-201. Zbl 1166.53001, MR 2408266 |
Reference:
|
[17] Plaut, C.: Metric spaces of curvature $\geq k$.In: Handbook of Geometric Topology Elsevier Amsterdam (2002), 819-898. Zbl 1011.57002, MR 1886682 |
Reference:
|
[18] Rataj, J., Zajíček, L.: Critical values and level sets of distance functions in Riemannian, Alexandrov and Minkowski spaces.arXiv 0911.4020. |
Reference:
|
[19] Reshetnyak, Yu. G.: On a generalization of convex surfaces.Math. Sb., N. Ser. 40 (1956), 381-398 Russian. MR 0083757 |
Reference:
|
[20] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory.Cambrigde University Press Cambrigde (1993). Zbl 0798.52001, MR 1216521 |
Reference:
|
[21] Shiohama, K., Tanaka, M.: Cut loci and distance spheres on Alexandrov surfaces.In: Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Sémin. Congr., 1, A. L. Besse Société Mathématique de France Paris (1996), 531-559. Zbl 0874.53032, MR 1427770 |
Reference:
|
[22] Veselý, L., Zajíček, L.: Delta-convex mappings between Banach spaces and applications.Diss. Math. Vol. 289 (1989). MR 1016045 |
Reference:
|
[23] Walter, R.: Some analytical properties of geodesically convex sets.Abh. Math. Semin. Univ. Hamb. 45 (1976), 263-282. Zbl 0332.53026, MR 0417984, 10.1007/BF02992922 |
Reference:
|
[24] Whitehead, J. H. C.: Manifolds with transverse fields in Euclidean space.Ann. Math. 73 (1961), 154-212. Zbl 0096.37802, MR 0124917, 10.2307/1970286 |
Reference:
|
[25] Zajíček, L.: On the differentiation of convex functions in finite and infinite dimensional spaces.Czechoslovak Math. J. 29 (1979), 340-348. MR 0536060 |
Reference:
|
[26] Zajíček, L.: Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space.Czechoslovak Math. J. 33 (1983), 292-308. MR 0699027 |
Reference:
|
[27] Zajíček, L.: On Lipschitz and d.c. surfaces of finite codimension in a Banach space.Czechoslovak Math. J. 58 (2008), 849-864. MR 2455942, 10.1007/s10587-008-0055-2 |
Reference:
|
[28] Zamfirescu, T.: On the cut locus in Alexandrov spaces and applications to convex surfaces.Pac. J. Math. 217 (2004), 375-386. Zbl 1068.53048, MR 2109940, 10.2140/pjm.2004.217.375 |
. |