Previous |  Up |  Next

Article

Title: The Fourier integral operators on Hardy spaces associated with Herz spaces (English)
Author: Liu, Lixia
Author: Ma, Bolin
Author: Liu, Sanyang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 1
Year: 2011
Pages: 271-287
Summary lang: English
.
Category: math
.
Summary: In this paper, it is proved that the Fourier integral operators of order $m$, with $-n < m \leq -(n-1)/2$, are bounded from three kinds of Hardy spaces associated with Herz spaces to their corresponding Herz spaces. (English)
Keyword: Fourier integral operator
Keyword: Hardy spaces
Keyword: Herz spaces
MSC: 35S30
MSC: 42B30
MSC: 47B38
MSC: 47G10
idZBL: Zbl 1216.47056
idMR: MR2782773
DOI: 10.1007/s10587-011-0012-3
.
Date available: 2011-05-23T12:47:15Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141532
.
Reference: [1] Hörmander, L.: Fourier integral operators I.Acta Math. 127 (1971), 79-183. MR 0388463, 10.1007/BF02392052
Reference: [2] Lu, S., Yang, D.: The Littlewood-Paley function and $\phi$-transform characterizations of a new Hardy space $HK_2$ associated with the Herz space.Stud. Math. 101 (1992), 285-298. MR 1153785, 10.4064/sm-101-3-285-298
Reference: [3] Lu, S., Yang, D.: The decomposition of the weighted Herz spaces on $R_n$ and its applications.Sci. China Ser. A 38 (1995), 147-158. MR 1338138
Reference: [4] Lu, S., Yang, D.: The weighted Herz-type Hardy space and its applications.Sci. China Ser. A 38 (1995), 661-673. Zbl 0832.42013, MR 1351232
Reference: [5] Marco, M. P., Silvia, S.: Boundedness of Fourier integral operators on Hardy spaces.Proc. Edinb. Math. Soc. 51 (2008), 443-463. MR 2465918, 10.1017/S001309150500012X
Reference: [6] Seeger, A., Sogge, C., Stein, E.: Regularity properties of Fourier integral operators.Ann. Math. 134 (1991), 231-251. Zbl 0754.58037, MR 1127475, 10.2307/2944346
Reference: [7] Stein, E.: Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals.Princeton University Press (1993). Zbl 0821.42001, MR 1232192
Reference: [8] Yang, D.: The real-variable characterizations of Hardy spaces $HK_p(R^n)$.Adv. Math. 24 (1995), 63-73. MR 1334605
Reference: [9] Zhou, Y.: Boundedness of sublinear operators in Herz-type Hardy spaces.Taiwannse J. Math. 13 (2009), 983-996. Zbl 1180.42009, MR 2526352, 10.11650/twjm/1500405453
.

Files

Files Size Format View
CzechMathJ_61-2011-1_20.pdf 294.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo