[3] Friendlander, J. B., Pomerance, C., Shparlinski, I. E.:
Period of the power generator and small values of Carmichael's function. Math. Comput. 70 (2001), 1591-1605; Corrigendum ibid.
71 (2002), 1803-1806.
MR 1836921
[4] Hartnell, B., Rall, D. F.:
Domination in Cartesian products: Vizing's conjecture. Domination in Graphs. Advanced Topics Dekker New York T. Waynes, S. T. Hedetniemi, P. J. Slater (1998), 163-189.
MR 1605692 |
Zbl 0890.05035
[5] Křížek, M., Luca, F., Somer, L.:
17 Lectures on Fermat Numbers: From Number Theory to Geometry. CMS Books in Mathematics, Vol. 9. Springer New York (2001).
MR 1866957
[6] Kurlberg, P., Pomerance, C.:
On the periods of the linear congruential and power generators. Acta Arith. (2005), 119 149-169.
MR 2167719 |
Zbl 1080.11059
[7] Lucheta, C., Miller, E., Reiter, C.:
Digraphs from powers modulo $p$. Fibonacci Q. 34 (1996), 226-239.
MR 1390409 |
Zbl 0855.05067
[8] Martin, G., Pomerance, C.:
The iterated Carmichael $\lambda$-function and the number of cycles of the power generator. Acta Arith. (2005), 118 305-335.
MR 2165548 |
Zbl 1109.11046
[9] Niven, I., Zuckerman, H. S., Montgomery, H. L.:
An Introduction to the Theory of Numbers. 5th ed. John Wiley & Sons New York (1991).
MR 1083765 |
Zbl 0742.11001
[12] Somer, L., Křížek, M.:
On semiregular digraphs of the congruence $x^k\equiv y\pmod n$. Commentat. Math. Univ. Carol. 48 (2007), 41-58.
MR 2338828
[14] Szalay, L.:
A discrete iteration in number theory. Berzseneyi Dániel Tanárk. Föisk. Tud. Közl., Termtud. 8 (1992), 71-91 Hungarian.
Zbl 0801.11011