Previous |  Up |  Next

Article

Title: The structure of digraphs associated with the congruence $x^k\equiv y \pmod n$ (English)
Author: Somer, Lawrence
Author: Křížek, Michal
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 2
Year: 2011
Pages: 337-358
Summary lang: English
.
Category: math
.
Summary: We assign to each pair of positive integers $n$ and $k\ge 2$ a digraph $G(n,k)$ whose set of vertices is $H=\{0,1,\dots ,n-1\}$ and for which there is a directed edge from $a\in H$ to $b\in H$ if $a^k\equiv b\pmod n$. We investigate the structure of $G(n,k)$. In particular, upper bounds are given for the longest cycle in $G(n,k)$. We find subdigraphs of $G(n,k)$, called fundamental constituents of $G(n,k)$, for which all trees attached to cycle vertices are isomorphic. (English)
Keyword: Sophie Germain primes
Keyword: Fermat primes
Keyword: primitive roots
Keyword: Chinese Remainder Theorem
Keyword: congruence
Keyword: digraphs
MSC: 05C20
MSC: 11A07
MSC: 11A15
MSC: 20K01
idZBL: Zbl 1249.11006
idMR: MR2905408
DOI: 10.1007/s10587-011-0079-x
.
Date available: 2011-06-06T10:27:45Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141538
.
Reference: [1] Carlip, W., Mincheva, M.: Symmetry of iteration digraphs.Czech. Math. J. 58 (2008), 131-145. MR 2402530, 10.1007/s10587-008-0009-8
Reference: [2] Chou, W.-S., Shparlinski, I. E.: On the cycle structure of repeated exponentiation modulo a prime.J. Number Theory 107 (2004), 345-356. Zbl 1060.11059, MR 2072394, 10.1016/j.jnt.2004.04.005
Reference: [3] Friendlander, J. B., Pomerance, C., Shparlinski, I. E.: Period of the power generator and small values of Carmichael's function.Math. Comput. 70 (2001), 1591-1605; Corrigendum ibid. 71 (2002), 1803-1806. MR 1836921
Reference: [4] Hartnell, B., Rall, D. F.: Domination in Cartesian products: Vizing's conjecture.Domination in Graphs. Advanced Topics Dekker New York T. Waynes, S. T. Hedetniemi, P. J. Slater (1998), 163-189. Zbl 0890.05035, MR 1605692
Reference: [5] Křížek, M., Luca, F., Somer, L.: 17 Lectures on Fermat Numbers: From Number Theory to Geometry. CMS Books in Mathematics, Vol. 9.Springer New York (2001). MR 1866957
Reference: [6] Kurlberg, P., Pomerance, C.: On the periods of the linear congruential and power generators.Acta Arith. (2005), 119 149-169. Zbl 1080.11059, MR 2167719
Reference: [7] Lucheta, C., Miller, E., Reiter, C.: Digraphs from powers modulo $p$.Fibonacci Q. 34 (1996), 226-239. Zbl 0855.05067, MR 1390409
Reference: [8] Martin, G., Pomerance, C.: The iterated Carmichael $\lambda$-function and the number of cycles of the power generator.Acta Arith. (2005), 118 305-335. Zbl 1109.11046, MR 2165548
Reference: [9] Niven, I., Zuckerman, H. S., Montgomery, H. L.: An Introduction to the Theory of Numbers. 5th ed.John Wiley & Sons New York (1991). Zbl 0742.11001, MR 1083765
Reference: [10] Somer, L., Křížek, M.: On a connection of number theory with graph theory.Czech. Math. J. 54 (2004), 465-485. MR 2059267, 10.1023/B:CMAJ.0000042385.93571.58
Reference: [11] Somer, L., Křížek, M.: Structure of digraphs associated with quadratic congruences with composite moduli.Discrete Math. 306 (2006), 2174-2185. MR 2255611, 10.1016/j.disc.2005.12.026
Reference: [12] Somer, L., Křížek, M.: On semiregular digraphs of the congruence $x^k\equiv y\pmod n$.Commentat. Math. Univ. Carol. 48 (2007), 41-58. MR 2338828
Reference: [13] Somer, L., Křížek, M.: On symmetric digraphs of the congruence $x^k\equiv y\pmod n$.Discrete Math. 309 (2009), 1999-2009. MR 2510326, 10.1016/j.disc.2008.04.009
Reference: [14] Szalay, L.: A discrete iteration in number theory.Berzseneyi Dániel Tanárk. Föisk. Tud. Közl., Termtud. 8 (1992), 71-91 Hungarian. Zbl 0801.11011
Reference: [15] Vasiga, T., Shallit, J.: On the iteration of certain quadratic maps over GF$(p)$.Discrete Math. 277 (2004), 219-240. Zbl 1045.11086, MR 2033734, 10.1016/S0012-365X(03)00158-4
Reference: [16] Wilson, B.: Power digraphs modulo $n$.Fibonacci Q. 36 (1998), 229-239. Zbl 0936.05049, MR 1627384
.

Files

Files Size Format View
CzechMathJ_61-2011-2_5.pdf 370.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo