Previous |  Up |  Next

Article

Title: $L^\infty$ estimates of solution for $m$-Laplacian parabolic equation with a nonlocal term (English)
Author: Hou, Pulun
Author: Chen, Caisheng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 2
Year: 2011
Pages: 389-400
Summary lang: English
.
Category: math
.
Summary: In this paper, we consider the global existence, uniqueness and $L^{\infty }$ estimates of weak solutions to quasilinear parabolic equation of $m$-Laplacian type $u_{t}-\mathop {\rm div}(|\nabla u|^{m-2}\nabla u)=u|u|^{\beta -1}\int _{\Omega } |u|^{\alpha } {\rm d} x$ in $\Omega \times (0,\infty )$ with zero Dirichlet boundary condition in $\partial \Omega $. Further, we obtain the $L^{\infty }$ estimate of the solution $u(t)$ and $\nabla u(t)$ for $t>0$ with the initial data $u_0\in L^q(\Omega )$ $(q>1)$, and the case $\alpha +\beta < m-1$. (English)
Keyword: $m$-Laplacian parabolic equations
Keyword: global existence
Keyword: uniqueness
Keyword: $L^{\infty }$ estimates
MSC: 35A01
MSC: 35A02
MSC: 35B45
MSC: 35D30
MSC: 35K20
MSC: 35K65
MSC: 35K92
idZBL: Zbl 1249.35177
idMR: MR2905412
DOI: 10.1007/s10587-011-0083-1
.
Date available: 2011-06-06T10:30:56Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141542
.
Reference: [1] Bebernes, J., Bressan, A.: Thermal behavior for a confined reactive gas.J. Diff. Equ. 44 (1982), 118-133. Zbl 0489.45013, MR 0651690, 10.1016/0022-0396(82)90028-6
Reference: [2] Chen, C. S., Nakao, M., Ohara, Y.: Global existence and gradient estimates for quasilinear parabalic equations of the $m$-Laplacian type with a strong perturbation.Differ. Integral Equ. 14 (2001), 59-74. MR 1797932
Reference: [3] Chen, C. S.: $L^{\infty}$ estimates of solution for the $m$-Laplacian equation with initial value in $L^{q}(\Omega)$.Nonlinear Analysis 48 (2002), 607-616. Zbl 1081.42502, MR 1871469, 10.1016/S0362-546X(00)00209-1
Reference: [4] Chen, C. S.: On global attractor for $m$-Laplacian parabolic equation with local and nonlocal nonlinearity.J. Math. Anal. Appl. 337 (2008), 318-332. Zbl 1132.35016, MR 2356073, 10.1016/j.jmaa.2007.03.093
Reference: [5] Day, W. A.: A decreasing property of solutions of parabolic equations with applications to thermoelasticity.Quart. Appl. Math. 40 (1983), 468-475. Zbl 0514.35038, MR 0693879, 10.1090/qam/693879
Reference: [6] Dibendetto, E.: Degenerate Parabolic Equations.Springer-Verlag, Berlin (1993). MR 1230384
Reference: [7] Engler, H., Kawohl, B., Luckhaus, S.: Gradient estimates for solution of parabolic equations and systems.J. Math. Anal. Appl. 147 (1990), 309-329. MR 1050207, 10.1016/0022-247X(90)90350-O
Reference: [8] Ladyzhenskaya, O. A., Solonnikov, V. A., Uraltseva, N. N.: Linear and Quasilinear Equations of Parabolic Type.American Mathematical Society, Providence, RI (1969).
Reference: [9] Li, F. C., Xie, C. H.: Global and blow-up solutions to a $p$-Laplacian equation with nonlocal source.Computers Math. Appl. 46 (2003), 1525-1533. Zbl 1060.35055, MR 2024226, 10.1016/S0898-1221(03)90188-X
Reference: [10] Lions, J. L.: Quelques méthodes de résolution des problémes aux limites non linéaires.Dunod, Paris (1969). Zbl 0189.40603, MR 0259693
Reference: [11] Nakao, M., Chen, C. S.: Global existence and gradient estimates for quasilinear parabolic equations of m-Laplacian type with a nonlinear convection term.J. Diff. Equ. 162 (2000), 224-250. MR 1741878, 10.1006/jdeq.1999.3694
Reference: [12] Ohara, Y.: $L^\infty$ estimates of solutions of some nonlinear degenerate parabolic equations.Nonlinear Anal. TMA 18 (1992), 413-426. MR 1152718
Reference: [13] Ohara, Y.: Gradient estimates for some quasilinear parabolic equations with nonmonotonic perturbations.Adv. math. Sci. Appl. 6 (1996), 531-540. Zbl 0865.35018, MR 1411980
Reference: [14] Rouchon, P.: Universal bounds for global solutions of a diffusion equation with a nonlocal reaction term.J. Diff. Equ. 193 (2003), 75-94. Zbl 1035.35014, MR 1994059, 10.1016/S0022-0396(03)00039-1
Reference: [15] Temam, R.: Infinite-Dimensional Dynamical in Mechanics and Physics.Springer-Verlag, New York (1997). MR 1441312
Reference: [16] Veron, L.: Coércivité et proprietes regularisantes des semigroups nonlineaires dans les espaces de Banach.Faculté des Sciences et Techniques, Université François Rabelais-tours, France (1976).
.

Files

Files Size Format View
CzechMathJ_61-2011-2_9.pdf 273.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo