Previous |  Up |  Next

Article

Keywords:
monomial ideals; partitionable simplicial complexes; multicomplexes; Stanley ideals; polarization
Summary:
We define nice partitions of the multicomplex associated with a Stanley ideal. As the main result we show that if the monomial ideal $I$ is a CM Stanley ideal, then $I^p$ is a Stanley ideal as well, where $I^p$ is the polarization of $I$.
References:
[1] Anwar, I.: Janet's algorithm. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 51(99) (2008), 11-19. MR 2396280 | Zbl 1164.13010
[2] Anwar, I., Popescu, D.: Stanley conjecture in small embedding dimension. J. Algebra 318 (2007), 1027-1031. DOI 10.1016/j.jalgebra.2007.06.005 | MR 2371984 | Zbl 1132.13009
[3] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Rev. edition. Cambridge University Press Cambridge (1998). MR 1251956
[4] Cimpoeas, M.: Stanley depth of complete intersection monomial ideals. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 51(99) (2008), 205-211. MR 2433498 | Zbl 1174.13033
[5] Cimpoeas, M.: Stanley depth for monomial ideals in three variables. Preprint (2008), Arxiv:Math.AC/0807.2166. MR 3085722
[6] Herzog, J., Jahan, A. Soleyman, Yassemi, S.: Stanley decompositions and partitionable simplicial complexes. J. Algebr. Comb. 27 (2008), 113-125. DOI 10.1007/s10801-007-0076-1 | MR 2366164
[7] Herzog, J., Jahan, A. Soleyman, Zheng, X.: Skeletons of monomial ideals. Math. Nachr (to appear). MR 2744136
[8] Herzog, J., Popescu, D.: Finite filtrations of modules and shellable multicomplexes. Manuscr. Math. 121 (2006), 385-410. DOI 10.1007/s00229-006-0044-4 | MR 2267659 | Zbl 1107.13017
[9] Herzog, J., Vladoiu, M., Zheng, X.: How to compute the Stanley depth of a monomial ideal. J. Algebra 322 (2009), 3151-3169. DOI 10.1016/j.jalgebra.2008.01.006 | MR 2567414 | Zbl 1186.13019
[10] Jahan, A. Soleyman: Prime filtrations of monomial ideals and polarizations. J. Algebra 312 (2007), 1011-1032. DOI 10.1016/j.jalgebra.2006.11.002 | MR 2333198
[11] Nasir, S.: Stanley decomposition and localization. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 51(99) (2008), 151-158. MR 2423489
[12] Popescu, D.: Stanley depth of multigraded modules. J. Algebra 321 (2009), 2782-2797. DOI 10.1016/j.jalgebra.2009.03.009 | MR 2512626 | Zbl 1179.13016
[13] Popescu, D., Qureshi, Muhammad I.: Computing the Stanley depth. \ Arxiv:Math. AC/\allowbreak0907.0912. MR 2609185 | Zbl 1201.13004
[14] Rauf, A.: Stanley decompositions, pretty clean filtrations and reductions modulo regular elements. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 50(98) (2007), 347-354. MR 2370321 | Zbl 1155.13311
[15] Stanley, R. P.: Linear Diophantine equations and local cohomology. Invent. Math. 68 (1982), 175-193. DOI 10.1007/BF01394054 | MR 0666158 | Zbl 0516.10009
Partner of
EuDML logo