Previous |  Up |  Next

Article

Title: Stanley decompositions and polarization (English)
Author: Ahmad, Sarfraz
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 2
Year: 2011
Pages: 483-493
Summary lang: English
.
Category: math
.
Summary: We define nice partitions of the multicomplex associated with a Stanley ideal. As the main result we show that if the monomial ideal $I$ is a CM Stanley ideal, then $I^p$ is a Stanley ideal as well, where $I^p$ is the polarization of $I$. (English)
Keyword: monomial ideals
Keyword: partitionable simplicial complexes
Keyword: multicomplexes
Keyword: Stanley ideals
Keyword: polarization
MSC: 13C14
MSC: 13F20
MSC: 13F55
MSC: 13H10
idZBL: Zbl 1249.13016
idMR: MR2905417
DOI: 10.1007/s10587-011-0067-1
.
Date available: 2011-06-06T10:36:04Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141547
.
Reference: [1] Anwar, I.: Janet's algorithm.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 51(99) (2008), 11-19. Zbl 1164.13010, MR 2396280
Reference: [2] Anwar, I., Popescu, D.: Stanley conjecture in small embedding dimension.J. Algebra 318 (2007), 1027-1031. Zbl 1132.13009, MR 2371984, 10.1016/j.jalgebra.2007.06.005
Reference: [3] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Rev. edition.Cambridge University Press Cambridge (1998). MR 1251956
Reference: [4] Cimpoeas, M.: Stanley depth of complete intersection monomial ideals.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 51(99) (2008), 205-211. Zbl 1174.13033, MR 2433498
Reference: [5] Cimpoeas, M.: Stanley depth for monomial ideals in three variables.Preprint (2008), Arxiv:Math.AC/0807.2166. MR 3085722
Reference: [6] Herzog, J., Jahan, A. Soleyman, Yassemi, S.: Stanley decompositions and partitionable simplicial complexes.J. Algebr. Comb. 27 (2008), 113-125. MR 2366164, 10.1007/s10801-007-0076-1
Reference: [7] Herzog, J., Jahan, A. Soleyman, Zheng, X.: Skeletons of monomial ideals.Math. Nachr (to appear). MR 2744136
Reference: [8] Herzog, J., Popescu, D.: Finite filtrations of modules and shellable multicomplexes.Manuscr. Math. 121 (2006), 385-410. Zbl 1107.13017, MR 2267659, 10.1007/s00229-006-0044-4
Reference: [9] Herzog, J., Vladoiu, M., Zheng, X.: How to compute the Stanley depth of a monomial ideal.J. Algebra 322 (2009), 3151-3169. Zbl 1186.13019, MR 2567414, 10.1016/j.jalgebra.2008.01.006
Reference: [10] Jahan, A. Soleyman: Prime filtrations of monomial ideals and polarizations.J. Algebra 312 (2007), 1011-1032. MR 2333198, 10.1016/j.jalgebra.2006.11.002
Reference: [11] Nasir, S.: Stanley decomposition and localization.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 51(99) (2008), 151-158. MR 2423489
Reference: [12] Popescu, D.: Stanley depth of multigraded modules.J. Algebra 321 (2009), 2782-2797. Zbl 1179.13016, MR 2512626, 10.1016/j.jalgebra.2009.03.009
Reference: [13] Popescu, D., Qureshi, Muhammad I.: Computing the Stanley depth.\ Arxiv:Math. AC/\allowbreak0907.0912. Zbl 1201.13004, MR 2609185
Reference: [14] Rauf, A.: Stanley decompositions, pretty clean filtrations and reductions modulo regular elements.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 50(98) (2007), 347-354. Zbl 1155.13311, MR 2370321
Reference: [15] Stanley, R. P.: Linear Diophantine equations and local cohomology.Invent. Math. 68 (1982), 175-193. Zbl 0516.10009, MR 0666158, 10.1007/BF01394054
.

Files

Files Size Format View
CzechMathJ_61-2011-2_14.pdf 265.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo