Title:
|
Continuous dependence on parameters of certain self-affine measures, and their singularity (English) |
Author:
|
Ding, Daoxin |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
61 |
Issue:
|
2 |
Year:
|
2011 |
Pages:
|
495-508 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we first prove that the self-affine sets depend continuously on the expanding matrix and the digit set, and the corresponding self-affine measures with respect to the probability weight behave in much the same way. Moreover, we obtain some sufficient conditions for certain self-affine measures to be singular. (English) |
Keyword:
|
iterated function system |
Keyword:
|
self-affine set |
Keyword:
|
self-affine measure |
Keyword:
|
singularity |
MSC:
|
28A80 |
idZBL:
|
Zbl 1249.28009 |
idMR:
|
MR2905418 |
DOI:
|
10.1007/s10587-011-0068-0 |
. |
Date available:
|
2011-06-06T10:37:14Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141548 |
. |
Reference:
|
[1] Erdős, P.: On family of symmetric Bernoulli convolutions.Amer. J. Math. 61 (1939), 974-976. MR 0000311, 10.2307/2371641 |
Reference:
|
[2] Falconer, K. J.: The Geometry of Fractal Sets.Cambridge University Press Cambridge (1985). Zbl 0587.28004, MR 0867284 |
Reference:
|
[3] Falconer, K. J.: Fractal Geometry: Mathematical Foundations and Applications.John Wiley & Sons Chichester (1990). Zbl 0689.28003, MR 1102677 |
Reference:
|
[4] Falconer, K. J.: Techniques in Fractal Geometry.John Wiley & Sons Chichester (1997). Zbl 0869.28003, MR 1449135 |
Reference:
|
[5] Feng, D.-J., Wang, Y.: Bernoulli convolutions associated with certain non-Pisot numbers.Adv. Math. 187 (2004), 173-194. Zbl 1047.60044, MR 2074175, 10.1016/j.aim.2003.05.002 |
Reference:
|
[6] Garsia, A. M.: Arithmetic properties of Bernoulli convolutions.Trans. Am. Math. Soc. 102 (1962), 409-432. Zbl 0103.36502, MR 0137961, 10.1090/S0002-9947-1962-0137961-5 |
Reference:
|
[7] Hu, T.-Y.: Asymptotic behavior of Fourier transforms of self-similar measures.Proc. Am. Math. Soc. 129 (2001), 1713-1720. Zbl 0965.28002, MR 1814101, 10.1090/S0002-9939-00-05709-9 |
Reference:
|
[8] Hutchinson, J. E.: Fractal and self similarity.Indiana Univ. Math. J. 30 (1981), 713-747. MR 0625600, 10.1512/iumj.1981.30.30055 |
Reference:
|
[9] Jorgensen, P. E. T., Kornelson, K. A., Shuman, K. L.: Affine systems: asymptotics at infinity for fractal measures.Acta Appl. Math. 98 (2007), 181-222. Zbl 1149.28004, MR 2338387, 10.1007/s10440-007-9156-4 |
Reference:
|
[10] Lau, K.-S., Ngai, S.-M., Rao, H.: Iterated function systems with overlaps and self-similar measures.J. Lond. Math. Soc., II. Ser. 63 (2001), 99-116. Zbl 1019.28005, MR 1802760, 10.1112/S0024610700001654 |
Reference:
|
[11] Li, J.-L.: Singularity of certain self-affine measures.J. Math. Anal. Appl. 347 (2008), 375-380. Zbl 1153.28303, MR 2440333, 10.1016/j.jmaa.2008.05.083 |
Reference:
|
[12] Niu, M., Xi, L.-F.: Singularity of a class of self-similar measures.Chaos Solitons Fractals 34 (2007), 376-382. Zbl 1134.28009, MR 2327412, 10.1016/j.chaos.2006.03.029 |
Reference:
|
[13] Peres, Y., Schlag, W., Solomyak, B.: Sixty years of Bernoulli convolutions.Fractal Geometry and Stochastics, II. Proc. 2nd Conf. (Greifswald/Koserow, Germany, 1998) Birkhäuser Basel (2000), Prog. Probab. 46 (2000), 39-65. Zbl 0961.42006, MR 1785620 |
Reference:
|
[14] Salem, R.: Algebraic Numbers and Fourier Analysis.D. C. Heath and Company Boston (1963). Zbl 0126.07802, MR 0157941 |
Reference:
|
[15] Strichartz, R. S.: Self-similarity in harmonic analysis.J. Fourier Anal. Appl. 1 (1994), 1-37. Zbl 0851.42001, MR 1307067, 10.1007/s00041-001-4001-z |
. |