Previous |  Up |  Next

Article

Title: Continuous dependence on parameters of certain self-affine measures, and their singularity (English)
Author: Ding, Daoxin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 2
Year: 2011
Pages: 495-508
Summary lang: English
.
Category: math
.
Summary: In this paper, we first prove that the self-affine sets depend continuously on the expanding matrix and the digit set, and the corresponding self-affine measures with respect to the probability weight behave in much the same way. Moreover, we obtain some sufficient conditions for certain self-affine measures to be singular. (English)
Keyword: iterated function system
Keyword: self-affine set
Keyword: self-affine measure
Keyword: singularity
MSC: 28A80
idZBL: Zbl 1249.28009
idMR: MR2905418
DOI: 10.1007/s10587-011-0068-0
.
Date available: 2011-06-06T10:37:14Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141548
.
Reference: [1] Erdős, P.: On family of symmetric Bernoulli convolutions.Amer. J. Math. 61 (1939), 974-976. MR 0000311, 10.2307/2371641
Reference: [2] Falconer, K. J.: The Geometry of Fractal Sets.Cambridge University Press Cambridge (1985). Zbl 0587.28004, MR 0867284
Reference: [3] Falconer, K. J.: Fractal Geometry: Mathematical Foundations and Applications.John Wiley & Sons Chichester (1990). Zbl 0689.28003, MR 1102677
Reference: [4] Falconer, K. J.: Techniques in Fractal Geometry.John Wiley & Sons Chichester (1997). Zbl 0869.28003, MR 1449135
Reference: [5] Feng, D.-J., Wang, Y.: Bernoulli convolutions associated with certain non-Pisot numbers.Adv. Math. 187 (2004), 173-194. Zbl 1047.60044, MR 2074175, 10.1016/j.aim.2003.05.002
Reference: [6] Garsia, A. M.: Arithmetic properties of Bernoulli convolutions.Trans. Am. Math. Soc. 102 (1962), 409-432. Zbl 0103.36502, MR 0137961, 10.1090/S0002-9947-1962-0137961-5
Reference: [7] Hu, T.-Y.: Asymptotic behavior of Fourier transforms of self-similar measures.Proc. Am. Math. Soc. 129 (2001), 1713-1720. Zbl 0965.28002, MR 1814101, 10.1090/S0002-9939-00-05709-9
Reference: [8] Hutchinson, J. E.: Fractal and self similarity.Indiana Univ. Math. J. 30 (1981), 713-747. MR 0625600, 10.1512/iumj.1981.30.30055
Reference: [9] Jorgensen, P. E. T., Kornelson, K. A., Shuman, K. L.: Affine systems: asymptotics at infinity for fractal measures.Acta Appl. Math. 98 (2007), 181-222. Zbl 1149.28004, MR 2338387, 10.1007/s10440-007-9156-4
Reference: [10] Lau, K.-S., Ngai, S.-M., Rao, H.: Iterated function systems with overlaps and self-similar measures.J. Lond. Math. Soc., II. Ser. 63 (2001), 99-116. Zbl 1019.28005, MR 1802760, 10.1112/S0024610700001654
Reference: [11] Li, J.-L.: Singularity of certain self-affine measures.J. Math. Anal. Appl. 347 (2008), 375-380. Zbl 1153.28303, MR 2440333, 10.1016/j.jmaa.2008.05.083
Reference: [12] Niu, M., Xi, L.-F.: Singularity of a class of self-similar measures.Chaos Solitons Fractals 34 (2007), 376-382. Zbl 1134.28009, MR 2327412, 10.1016/j.chaos.2006.03.029
Reference: [13] Peres, Y., Schlag, W., Solomyak, B.: Sixty years of Bernoulli convolutions.Fractal Geometry and Stochastics, II. Proc. 2nd Conf. (Greifswald/Koserow, Germany, 1998) Birkhäuser Basel (2000), Prog. Probab. 46 (2000), 39-65. Zbl 0961.42006, MR 1785620
Reference: [14] Salem, R.: Algebraic Numbers and Fourier Analysis.D. C. Heath and Company Boston (1963). Zbl 0126.07802, MR 0157941
Reference: [15] Strichartz, R. S.: Self-similarity in harmonic analysis.J. Fourier Anal. Appl. 1 (1994), 1-37. Zbl 0851.42001, MR 1307067, 10.1007/s00041-001-4001-z
.

Files

Files Size Format View
CzechMathJ_61-2011-2_15.pdf 274.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo