# Article

Full entry | PDF   (0.2 MB)
Keywords:
$C^{k}$ maps; partial regularity; Carleman classes; Beurling classes
Summary:
Let $\Lambda \subset \mathbb{R}^{n}\times \mathbb{R}^{m}$ and $k$ be a positive integer. Let $f:\mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ be a locally bounded map such that for each $(\xi ,\eta )\in \Lambda$, the derivatives $D_{\xi }^{j}f(x):= \frac{d^{j}}{dt^{j}}f(x+t\xi ) \Big\vert _{t=0}$, $j=1,2,\dots k$, exist and are continuous. In order to conclude that any such map $f$ is necessarily of class $C^{k}$ it is necessary and sufficient that $\Lambda$ be not contained in the zero-set of a nonzero homogenous polynomial $\Phi (\xi ,\eta )$ which is linear in $\eta =(\eta _{1},\eta _{2},\dots ,\eta _{m})$ and homogeneous of degree $k$ in $\xi =(\xi _{1},\xi _{2},\dots ,\xi _{n})$. This generalizes a result of J. Boman for the case $k=1$. The statement and the proof of a theorem of Boman for the case $k=\infty$ is also extended to include the Carleman classes $C\{M_{k}\}$ and the Beurling classes $C(M_{k})$ (Boman J., Partial regularity of mappings between Euclidean spaces, Acta Math. 119 (1967), 1--25).
References:
[1] Agbor D., Boman J.: On modulus of continuity of mappings between Euclidean spaces. Math. Scandinavica(to appear).
[2] Bierstone E., Milman P.D., Parusinski A.: A function which is arc-analytic but not continuous. Proc. Amer. Math. Soc. 113 (1991), 419–423. DOI 10.1090/S0002-9939-1991-1072083-4 | MR 1072083 | Zbl 0739.32009
[3] Bochnak J.: Analytic functions in Banach spaces. Studia Math. 35 (1970), 273–292. MR 0273396 | Zbl 0199.18402
[4] Boman J.: Partial regularity of mappings between Euclidean spaces. Acta Math. 119 (1967), 1–25. DOI 10.1007/BF02392077 | MR 0220883 | Zbl 0186.10001
[5] Hörmander L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin, 2003. MR 1996773
[6] Korevaar J.: Applications of $\mathbb{C}^{n}$ capacities. Several complex variables and complex geometry, Part 1 (Santa Cruz, CA, 1989), Amer. Math. Soc., Providence, RI, 1991, pp. 105–118. MR 1128518
[7] Krantz S.G., Parks H.R.: A Primer of Real Analytic Functions. second edition, Birkhäuser, Boston, MS, 2002. MR 1916029 | Zbl 1015.26030
[8] Neelon T.S.: On separate ultradifferentiability of functions. Acta Sci. Math. (Szeged) 64 (1998), 489–494. MR 1666030 | Zbl 0927.46023
[9] Neelon T.S.: Ultradifferentiable functions on lines in $\mathbb{R}^{n}$. Proc. Amer. Math. Soc. 127 (1999), 2099–2104. DOI 10.1090/S0002-9939-99-04759-0 | MR 1487332
[10] Neelon T.S.: A Bernstein–Walsh type inequality and applications. Canad. Math. Bull. 49 (2006), 256–264. DOI 10.4153/CMB-2006-026-9 | MR 2226248
[11] Neelon T.S.: Restrictions of power series and functions to algebraic surfaces. Analysis (Munich) 29 (2009), no. 1, page 1–15. DOI 10.1524/anly.2009.0929 | MR 2524101 | Zbl 1179.26088
[12] Rudin W.: Principles of Mathematical Analysis. 3rd edition, McGraw-Hill, New York, 1976. MR 0385023 | Zbl 0346.26002
[13] Siciak J.: A characterization of analytic functions of $n$ real variables. Studia Mathematica 35 (1970), 293–297. MR 0279263 | Zbl 0197.05801

Partner of