Title:
|
On Boman's theorem on partial regularity of mappings (English) |
Author:
|
Neelon, Tejinder S. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
52 |
Issue:
|
3 |
Year:
|
2011 |
Pages:
|
349-357 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\Lambda \subset \mathbb{R}^{n}\times \mathbb{R}^{m}$ and $k$ be a positive integer. Let $f:\mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$ be a locally bounded map such that for each $(\xi ,\eta )\in \Lambda $, the derivatives $D_{\xi }^{j}f(x):= \frac{d^{j}}{dt^{j}}f(x+t\xi ) \Big\vert _{t=0}$, $j=1,2,\dots k$, exist and are continuous. In order to conclude that any such map $f$ is necessarily of class $C^{k}$ it is necessary and sufficient that $\Lambda $ be not contained in the zero-set of a nonzero homogenous polynomial $\Phi (\xi ,\eta )$ which is linear in $\eta =(\eta _{1},\eta _{2},\dots ,\eta _{m})$ and homogeneous of degree $k$ in $\xi =(\xi _{1},\xi _{2},\dots ,\xi _{n})$. This generalizes a result of J. Boman for the case $k=1$. The statement and the proof of a theorem of Boman for the case $k=\infty $ is also extended to include the Carleman classes $C\{M_{k}\}$ and the Beurling classes $C(M_{k})$ (Boman J., Partial regularity of mappings between Euclidean spaces, Acta Math. 119 (1967), 1--25). (English) |
Keyword:
|
$C^{k}$ maps |
Keyword:
|
partial regularity |
Keyword:
|
Carleman classes |
Keyword:
|
Beurling classes |
MSC:
|
26B12 |
MSC:
|
26B35 |
idZBL:
|
Zbl 1249.26019 |
idMR:
|
MR2843228 |
. |
Date available:
|
2011-08-15T19:12:16Z |
Last updated:
|
2013-10-14 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141607 |
. |
Reference:
|
[1] Agbor D., Boman J.: On modulus of continuity of mappings between Euclidean spaces.Math. Scandinavica(to appear). |
Reference:
|
[2] Bierstone E., Milman P.D., Parusinski A.: A function which is arc-analytic but not continuous.Proc. Amer. Math. Soc. 113 (1991), 419–423. Zbl 0739.32009, MR 1072083, 10.1090/S0002-9939-1991-1072083-4 |
Reference:
|
[3] Bochnak J.: Analytic functions in Banach spaces.Studia Math. 35 (1970), 273–292. Zbl 0199.18402, MR 0273396 |
Reference:
|
[4] Boman J.: Partial regularity of mappings between Euclidean spaces.Acta Math. 119 (1967), 1–25. Zbl 0186.10001, MR 0220883, 10.1007/BF02392077 |
Reference:
|
[5] Hörmander L.: The Analysis of Linear Partial Differential Operators I.Springer, Berlin, 2003. MR 1996773 |
Reference:
|
[6] Korevaar J.: Applications of $\mathbb{C}^{n}$ capacities.Several complex variables and complex geometry, Part 1 (Santa Cruz, CA, 1989), Amer. Math. Soc., Providence, RI, 1991, pp. 105–118. MR 1128518 |
Reference:
|
[7] Krantz S.G., Parks H.R.: A Primer of Real Analytic Functions.second edition, Birkhäuser, Boston, MS, 2002. Zbl 1015.26030, MR 1916029 |
Reference:
|
[8] Neelon T.S.: On separate ultradifferentiability of functions.Acta Sci. Math. (Szeged) 64 (1998), 489–494. Zbl 0927.46023, MR 1666030 |
Reference:
|
[9] Neelon T.S.: Ultradifferentiable functions on lines in $\mathbb{R}^{n}$.Proc. Amer. Math. Soc. 127 (1999), 2099–2104. MR 1487332, 10.1090/S0002-9939-99-04759-0 |
Reference:
|
[10] Neelon T.S.: A Bernstein–Walsh type inequality and applications.Canad. Math. Bull. 49 (2006), 256–264. MR 2226248, 10.4153/CMB-2006-026-9 |
Reference:
|
[11] Neelon T.S.: Restrictions of power series and functions to algebraic surfaces.Analysis (Munich) 29 (2009), no. 1, page 1–15. Zbl 1179.26088, MR 2524101, 10.1524/anly.2009.0929 |
Reference:
|
[12] Rudin W.: Principles of Mathematical Analysis.3rd edition, McGraw-Hill, New York, 1976. Zbl 0346.26002, MR 0385023 |
Reference:
|
[13] Siciak J.: A characterization of analytic functions of $n$ real variables.Studia Mathematica 35 (1970), 293–297. Zbl 0197.05801, MR 0279263 |
. |