Previous |  Up |  Next

Article

Title: Several comments on the Henstock-Kurzweil and McShane integrals of vector-valued functions (English)
Author: Naralenkov, Kirill
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 4
Year: 2011
Pages: 1091-1106
Summary lang: English
.
Category: math
.
Summary: We make some comments on the problem of how the Henstock-Kurzweil integral extends the McShane integral for vector-valued functions from the descriptive point of view. (English)
Keyword: Henstock-Kurzweil integral
Keyword: McShane integral
Keyword: Pettis integral
Keyword: $AC$
Keyword: $AC_{*}$
Keyword: and $AC_{\delta }$ functions
Keyword: Alexiewicz norm
MSC: 26A39
MSC: 28B05
idZBL: Zbl 1249.26010
idMR: MR2886259
DOI: 10.1007/s10587-011-0050-x
.
Date available: 2011-12-16T15:51:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141809
.
Reference: [1] Deville, R., Rodríguez, J.: Integration in Hilbert generated Banach spaces.Isr. J. Math. 177 (2010), 285-306. MR 2684422, 10.1007/s11856-010-0047-4
Reference: [2] Fremlin, D. H.: The Henstock and McShane integrals of vector-valued functions.Ill. J. Math. 38 (1994), 471-479. Zbl 0797.28006, MR 1269699, 10.1215/ijm/1255986726
Reference: [3] Fremlin, D. H.: The generalized McShane integral.Ill. J. Math. 39 (1995), 39-67. Zbl 0810.28006, MR 1299648, 10.1215/ijm/1255986628
Reference: [4] Fremlin, D. H., Mendoza, J.: On the integration of vector-valued functions.Ill. J. Math. 38 (1994), 127-147. Zbl 0790.28004, MR 1245838, 10.1215/ijm/1255986891
Reference: [5] Gordon, R. A.: The McShane integral of Banach-valued functions.Ill. J. Math. 34 (1990), 557-567. Zbl 0685.28003, MR 1053562, 10.1215/ijm/1255988170
Reference: [6] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics, Vol. 4.American Mathematical Society (AMS) Providence (1994). MR 1288751, 10.1090/gsm/004/09
Reference: [7] Hájek, P., Santalucía, V. Montesinos, Vanderwerff, J., Zizler, V.: Biorthogonal Systems in Banach Spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC.Springer New York (2008). MR 2359536
Reference: [8] Kurzweil, J., Schwabik, Š.: On McShane integrability of Banach space-valued functions.Real Anal. Exch. 29 (2003-04), 763-780. MR 2083811
Reference: [9] Lee, T.-Y.: Banach-valued Henstock-Kurzweil integrable functions are McShane integrable on a portion.Math. Bohem. 130 (2005), 349-354. Zbl 1112.28008, MR 2182381
Reference: [10] Lee, T.-Y., Chew, T.-S., Lee, P.-Y.: On Henstock integrability in Euclidean spaces.Real Anal. Exch. 22 (1996), 382-389. Zbl 0879.26045, MR 1433623, 10.2307/44152760
Reference: [11] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces, I . Sequence Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92.Springer Berlin-Heidelberg-New York (1977). MR 0500056
Reference: [12] Lukashenko, T. P., Skvortsov, V. A., Solodov, A. P.: Generalized Integrals.URSS Moscow (2010), Russian.
Reference: [13] Naralenkov, K.: On Denjoy type extensions of the Pettis integral.Czech. Math. J. 60 (2010), 737-750. Zbl 1224.26028, MR 2672413, 10.1007/s10587-010-0047-x
Reference: [14] Saks, S.: Theory of the Integral.Dover Publications Mineola (1964). MR 0167578
Reference: [15] Swartz, C.: Norm convergence and uniform integrability for the Henstock-Kurzweil integral.Real Anal. Exch. 24 (1998), 423-426. Zbl 0943.26022, MR 1691761, 10.2307/44152964
Reference: [16] Talagrand, M.: Pettis Integral and Measure Theory.Mem. Am. Math. Soc. 307 (1984). Zbl 0582.46049, MR 0756174
Reference: [17] Ye, G.-J., An, T.-Q.: Remarks on Henstock integrability.Adv. Math. (China) 34 (2005), 741-745. MR 2213062
.

Files

Files Size Format View
CzechMathJ_61-2011-4_18.pdf 295.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo