Previous |  Up |  Next

Article

Title: Bar-invariant bases of the quantum cluster algebra of type $A^{(2)}_2$ (English)
Author: Chen, Xueqing
Author: Ding, Ming
Author: Sheng, Jie
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 4
Year: 2011
Pages: 1077-1090
Summary lang: English
.
Category: math
.
Summary: We construct bar-invariant $\mathbb {Z}[q^{\pm {1}/{2}}]$-bases of the quantum cluster algebra of the valued quiver $A^{(2)}_2$, one of which coincides with the quantum analogue of the basis of the corresponding cluster algebra discussed in P. Sherman, A. Zelevinsky: Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Moscow Math. J., 4, 2004, 947–974. (English)
Keyword: quantum cluster algebra
Keyword: $\mathbb {Z}[q^{\pm {1}/{2}}]$-basis
Keyword: valued quiver
MSC: 13F60
MSC: 14M17
MSC: 16G10
MSC: 16G20
MSC: 16T20
MSC: 20G42
idZBL: Zbl 1240.16014
idMR: MR2886258
DOI: 10.1007/s10587-011-0049-3
.
Date available: 2011-12-16T15:49:48Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141808
.
Reference: [1] Berenstein, A., Zelevinsky, A.: Quantum cluster algebras.Adv. Math. 195 (2005), 405-455. Zbl 1124.20028, MR 2146350, 10.1016/j.aim.2004.08.003
Reference: [2] Caldero, P., Chapoton, F.: Cluster algebras as Hall algebras of quiver representations.Comment. Math. Helv. 81 (2006), 595-616. Zbl 1119.16013, MR 2250855, 10.4171/CMH/65
Reference: [3] Caldero, P., Keller, B.: From triangulated categories to cluster algebras.Invent. Math. 172 (2008), 169-211. Zbl 1141.18012, MR 2385670, 10.1007/s00222-008-0111-4
Reference: [4] Caldero, P., Zelevinsky, A.: Laurent expansions in cluster algebras via quiver representations.Mosc. Math. J. 6 (2006), 411-429. Zbl 1133.16012, MR 2274858, 10.17323/1609-4514-2006-6-3-411-429
Reference: [5] Irelli, G. Cerulli: Canonically positive basis of cluster algebras of type $\smash{\widetilde{A}_2^{(1)}}$.arXiv:\allowbreak0904.2543.
Reference: [6] Ding, M., Xiao, J., Xu, F.: Integral bases of cluster algebras and representations of tame quivers.arXiv:0901.1937.
Reference: [7] Ding, M., Xu, F.: Bases of the quantum cluster algebra of the Kronecker quiver.arXiv:1004.2349.
Reference: [8] Ding, M., Xu, F.: Bases in quantum cluster algebra of finite and affine types.arXiv:\allowbreak1006.3928.
Reference: [9] Dlab, V., Ringel, C.: Indecomposable representations of graphs and algebras.Mem. Am. Math. Soc. 173 (1976). Zbl 0332.16015, MR 0447344
Reference: [10] Dupont, G.: Generic variables in acyclic cluster algebras.arXiv:0811.2909. Zbl 1209.13024, MR 2738377
Reference: [11] Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations.J. Am. Math. Soc. 15 (2002), 497-529. Zbl 1021.16017, MR 1887642, 10.1090/S0894-0347-01-00385-X
Reference: [12] Fomin, S., Zelevinsky, A.: Cluster algebras. II. Finite type classification.Invent. Math. 154 (2003), 63-121. Zbl 1054.17024, MR 2004457, 10.1007/s00222-003-0302-y
Reference: [13] Geiss, C., Leclerc, B., Schröer, J.: Generic bases for cluster algebras and the Chamber Ansatz.arXiv:1004.2781. MR 2833478
Reference: [14] Hubery, A.: Acyclic cluster algebras via Ringel-Hall algebras.Preprint (2005). MR 2844758
Reference: [15] Qin, F.: Quantum cluster variables via Serre polynomials.arXiv:1004.4171.
Reference: [16] Rupel, D.: On quantum analogue of the Caldero-Chapoton formula.arXiv:1003.2652.
Reference: [17] Sherman, P., Zelevinsky, A.: Positivity and canonical bases in rank 2 cluster algebras of finite and affine types.Moscow Math. J. 4 (2004), 947-974. Zbl 1103.16018, MR 2124174, 10.17323/1609-4514-2004-4-4-947-974
.

Files

Files Size Format View
CzechMathJ_61-2011-4_17.pdf 297.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo