Previous |  Up |  Next

Article

Title: Second order linear $q$-difference equations: nonoscillation and asymptotics (English)
Author: Řehák, Pavel
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 4
Year: 2011
Pages: 1107-1134
Summary lang: English
.
Category: math
.
Summary: The paper can be understood as a completion of the $q$-Karamata theory along with a related discussion on the asymptotic behavior of solutions to the linear $q$-difference equations. The $q$-Karamata theory was recently introduced as the theory of regularly varying like functions on the lattice $q^{\mathbb {N}_0}:=\{q^k\colon k\in \mathbb {N}_0\}$ with $q>1$. In addition to recalling the existing concepts of $q$-regular variation and $q$-rapid variation we introduce $q$-regularly bounded functions and prove many related properties. The $q$-Karamata theory is then applied to describe (in an exhaustive way) the asymptotic behavior as $t\to \infty $ of solutions to the $q$-difference equation $D_q^2y(t)+p(t)y(qt)=0$, where $p\colon \smash {q^{\mathbb {N}_0}}\to \mathbb {R}$. We also present the existing and some new criteria of Kneser type which are related to our subject. A comparison of our results with their continuous counterparts is made. It reveals interesting differences between the continuous case and the $q$-case and validates the fact that $q$-calculus is a natural setting for the Karamata like theory and provides a powerful tool in qualitative theory of dynamic equations. (English)
Keyword: regularly varying functions
Keyword: $q$-difference equations
Keyword: asymptotic behavior
Keyword: oscillation
MSC: 26A12
MSC: 39A12
MSC: 39A13
MSC: 39A21
idZBL: Zbl 1249.26002
idMR: MR2886260
DOI: 10.1007/s10587-011-0051-9
.
Date available: 2011-12-16T15:53:17Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141810
.
Reference: [1] Adams, C. R.: On the linear ordinary $q$-difference equation.Ann. of Math. 30 (1928/29), 195-205. MR 1502876, 10.2307/1968274
Reference: [2] Bangerezako, G.: An Introduction to $q$-Difference Equations.Preprint, Bujumbura (2007).
Reference: [3] Baoguo, J., Erbe, L., Peterson, A. C.: Oscillation of a family of $q$-difference equations.Appl. Math. Lett. 22 (2009), 871-875. Zbl 1170.39002, MR 2523597, 10.1016/j.aml.2008.07.014
Reference: [4] Bekker, M. B., Bohner, M. J., Herega, A. N., Voulov, H.: Spectral analysis of a $q$-difference operator.J. Phys. A, Math. Theor. 43 (2010), 15 pp. Zbl 1192.39006, MR 2606438, 10.1088/1751-8113/43/14/145207
Reference: [5] Bingham, N. H., Goldie, C. M., Teugels, J. L.: Regular Variation.Encyclopedia of Mathematics and its Applications, Vol. 27, Cambridge University Press (1989). Zbl 0667.26003, MR 1015093
Reference: [6] Birkhoff, G. D., Guenther, P. E.: Note on a canonical form for the linear $q$-difference system.Proc. Natl. Acad. Sci. USA 27 (1941), 218-222. Zbl 0061.20002, MR 0004047, 10.1073/pnas.27.4.218
Reference: [7] Bohner, M., Peterson, A. C.: Dynamic Equations on Time Scales: An Introduction with Applications.Birkhäuser, Boston (2001). Zbl 0978.39001, MR 1843232
Reference: [8] Bohner, M., Ünal, M.: Kneser's theorem in $q$-calculus.J. Phys. A, Math. Gen. 38 (2005), 6729-6739. Zbl 1080.39023, MR 2167223, 10.1088/0305-4470/38/30/008
Reference: [9] Bojanić, R., Seneta, E.: A unified theory of regularly varying sequences.Math. Z. 134 (1973), 91-106. MR 0333082, 10.1007/BF01214468
Reference: [10] Carmichael, R. D.: The general theory of linear $q$-difference equations.Amer. J. Math. 34 (1912), 147-168. MR 1506145, 10.2307/2369887
Reference: [11] Cheung, P., Kac, V.: Quantum Calculus.Springer-Verlag, Berlin-Heidelberg-New York (2002). Zbl 0986.05001, MR 1865777
Reference: [12] Vizio, L. Di, Ramis, J.-P., Sauloy, J., Zhang, C.: Équations aux $q$-différences.Gaz. Math., Soc. Math. Fr. 96 (2003), 20-49. Zbl 1063.39015, MR 1988639
Reference: [13] Ernst, T.: The different tongues of $q$-calculus.Proc. Est. Acad. Sci. 57 (2008), 81-99. Zbl 1161.33302, MR 2554406, 10.3176/proc.2008.2.03
Reference: [14] Galambos, J., Seneta, E.: Regularly varying sequences.Proc. Amer. Math. Soc. 41 (1973), 110-116. Zbl 0247.26002, MR 0323963, 10.1090/S0002-9939-1973-0323963-5
Reference: [15] Gasper, G., Rahman, M.: Basic Hypergeometric Series.Second edition, Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press (2004). Zbl 1129.33005, MR 2128719
Reference: [16] Jackson, F. H.: $q$-difference equations.Amer. J. Math. 32 (1910), 305-314. MR 1506108, 10.2307/2370183
Reference: [17] Karamata, J.: Sur certain ``Tauberian theorems'' de M. M. Hardy et Littlewood.Mathematica Cluj 3 (1930), 33-48.
Reference: [18] Koornwinder, T. H.: q-Special Functions, A Tutorial, Representations of Lie groups and quantum groups.V. Baldoni and M. A. Picardello Longman Scientific and Technical (1994), 46-128. MR 1431306
Reference: [19] Caine, J. Le: The linear $q$-difference equation of the second order.Am. J. Math. 65 (1943), 585-600. Zbl 0061.20003, MR 0008889, 10.2307/2371867
Reference: [20] Marić, V.: Regular Variation and Differential Equations.Lecture Notes in Mathematics. 1726, Springer-Verlag, Berlin-Heidelberg-New York (2000). MR 1753584
Reference: [21] Matucci, S., Řehák, P.: Regularly varying sequences and second order difference equations.J. Difference Equ. Appl. 14 (2008), 17-30. MR 2378889, 10.1080/10236190701466728
Reference: [22] Řehák, P.: How the constants in Hille-Nehari theorems depend on time scales.Adv. Difference Equ. 2006 (2006), 1-15. MR 2255171
Reference: [23] Řehák, P.: Regular variation on time scales and dynamic equations.Aust. J. Math. Anal. Appl. 5 (2008), 1-10. MR 2461676
Reference: [24] Řehák, P., Vítovec, J.: $q$-regular variation and $q$-difference equations.J. Phys. A, Math. Theor. 41 (2008), 1-10. MR 2515897, 10.1088/1751-8113/41/49/495203
Reference: [25] Řehák, P., Vítovec, J.: Regular variation on measure chains.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Method. 72 (2010), 439-448. MR 2574953, 10.1016/j.na.2009.06.078
Reference: [26] Řehák, P., Vítovec, J.: $q$-Karamata functions and second order $q$-difference equations.Electron. J. Qual. Theory Differ. Equ. 24 (2011), 20 pp. MR 2786478
Reference: [27] Seneta, E.: Regularly Varying Functions.Lecture Notes in Mathematics 508, Springer-Verlag, Berlin-Heidelberg-New York (1976). Zbl 0324.26002, MR 0453936
Reference: [28] Swanson, C. A.: Comparison and Oscillation Theory of Linear Differential Equations.Academic Press, New York (1968). Zbl 0191.09904, MR 0463570
Reference: [29] Trjitzinsky, W. J.: Analytic theory of linear $q$-difference equations.Acta Math. 61 (1933), 1-38. Zbl 0007.21103, MR 1555369, 10.1007/BF02547785
Reference: [30] Put, M. van der, Reversat, M.: Galois theory of $q$-difference equations.Ann. Fac. Sci. Toulouse, Math. (6) 16 (2007), 665-718. MR 2379057, 10.5802/afst.1164
.

Files

Files Size Format View
CzechMathJ_61-2011-4_19.pdf 389.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo