Previous |  Up |  Next

Article

Title: The growth of Dirichlet series (English)
Author: Gu, Zhendong
Author: Sun, Daochun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 1
Year: 2012
Pages: 29-38
Summary lang: English
.
Category: math
.
Summary: We define Knopp-Kojima maximum modulus and the Knopp-Kojima maximum term of Dirichlet series on the right half plane by the method of Knopp-Kojima, and discuss the relation between them. Then we discuss the relation between the Knopp-Kojima coefficients of Dirichlet series and its Knopp-Kojima order defined by Knopp-Kojima maximum modulus. Finally, using the above results, we obtain a relation between the coefficients of the Dirichlet series and its Ritt order. This improves one of Yu Jia-Rong's results, published in Acta Mathematica Sinica 21 (1978), 97–118. We also give two examples to show that the condition under which the main result holds can not be weakened. (English)
Keyword: Dirichlet series
Keyword: order
Keyword: abscissa of convergence
MSC: 30B50
idZBL: Zbl 1249.30004
idMR: MR2899732
DOI: 10.1007/s10587-012-0014-9
.
Date available: 2012-03-05T07:08:36Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142038
.
Reference: [1] Blambert, M.: Sur la notion de type de l'ordre d'une fonction entière.Ann. Sci. Éc. Norm. Supér, III. Sér. 79 (1962), 353-375 French. Zbl 0111.27302, MR 0179358, 10.24033/asens.1115
Reference: [2] Bohr, H.: Collected Mathematical Works.Copenhagen (1952), 992. Zbl 0049.00105
Reference: [3] Knopp, K.: Über de Konvergenzabszisse des Laplace-Integrals.Math. Z. 54 (1951), 291-296 German. MR 0042539, 10.1007/BF01574830
Reference: [4] Mandelbrojt, S.: Séries de Dirichlet.Principle et Méthodes, Paris, Gauthier-Villars (1969), 165 French. Zbl 0207.07201, MR 0259079
Reference: [5] Izumi, S.: Integral functions defined by Dirichlet's series.Japanese Journ. of Math. 6 (1929), 199-204. 10.4099/jjm1924.6.0_199
Reference: [6] Ritt, J. F.: On certain points in the theory of Dirichlet series.Amer. J. 50 (1928), 73-86. MR 1506655, 10.1021/ja01388a009
Reference: [7] Sugimura, K.: Übertragung einiger Sätze aus der Theorie der ganzen Funktionen auf Dirichletsche Reihen.M. Z. 29 (1928), 264-277 German. 10.1007/BF01180529
Reference: [8] Tanaka, C.: Note on Dirichlet series. V: On the integral functions defined by Dirichlet series. (I.).Tôhoku Math. J., II. Ser. 5 (1953), 67-78. Zbl 0053.37502, MR 0057320, 10.2748/tmj/1178245352
Reference: [9] Valiron, G.: Sur la croissance du module maximum des séries entières.S. M. F. Bull. 44 (1916), 45-64 French. MR 1504749
Reference: [10] Valiron, G.: Sur l'abscisse de convergence des séries de Dirichlet.S. M. F. Bull. 52 (1924), 166-174 French. MR 1504844
Reference: [11] Valiron, G.: Entire functions and Borel's directions.Proc. Natl. Acad. Sci. USA 20 (1934), 211-215. Zbl 0009.02503, 10.1073/pnas.20.3.211
Reference: [12] Valiron, G.: Théorie Générale des Séries de Dirichlet.Paris, Gauthier-Villars (Mémorial des sciences mathématiques, fasc. 17) (1926), French pp. 56.
Reference: [13] Yu, Ch.-Y.: Dirichlet series, Analytic functions of one complex variable.Contemp. Math., 48, Amer. Math. Soc., Providence, RI (1985), 201-216. MR 0838106
Reference: [14] Yu, Ch.-Y.: Sur les droites de Borel de certaines fonctions entières.Ann. Sci. Éc. Norm. Supér, III. Sér. 68 (1951), 65-104 French. Zbl 0045.03802, MR 0041223, 10.24033/asens.986
Reference: [15] Yu, J.-R.: Some properties of random Dirichlet series.Acta Math. Sin. 21 (1978), 97-118 Chinese. Zbl 0386.60044, MR 0507192
.

Files

Files Size Format View
CzechMathJ_62-2012-1_2.pdf 244.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo