Previous |  Up |  Next

Article

Title: Closed-form expression for Hankel determinants of the Narayana polynomials (English)
Author: Petković, Marko D.
Author: Barry, Paul
Author: Rajković, Predrag
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 1
Year: 2012
Pages: 39-57
Summary lang: English
.
Category: math
.
Summary: We considered a Hankel transform evaluation of Narayana and shifted Narayana polynomials. Those polynomials arises from Narayana numbers and have many combinatorial properties. A mainly used tool for the evaluation is the method based on orthogonal polynomials. Furthermore, we provided a Hankel transform evaluation of the linear combination of two consecutive shifted Narayana polynomials, using the same method (based on orthogonal polynomials) and previously obtained moment representation of Narayana and shifted Narayana polynomials. (English)
Keyword: Narayana numbers
Keyword: Hankel transform
Keyword: orthogonal polynomials
MSC: 11B83
MSC: 11Y55
MSC: 33C45
MSC: 34A25
idZBL: Zbl 1249.11042
idMR: MR2899733
DOI: 10.1007/s10587-012-0015-8
.
Date available: 2012-03-05T07:10:14Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142039
.
Reference: [1] Barry, P.: On integer-sequences-based constructions of generalized Pascal triangles.J. Integer Seq. 59 (2006), Article 06.2.4. Electronic only. MR 2217230
Reference: [2] Barry, P., Hennessy, A.: Notes on a family of Riordan arrays and associated integer Hankel transforms.J. Integer Seq. 12 (2009), Article ID 09.5.3. Electronic only. Zbl 1201.11034, MR 2520842
Reference: [3] Brändén, P.: $q$-Narayana numbers and the flag $h$-vector of $J(2 \times n)$.Discrete Math. 281 (2004), 67-81. MR 2047757, 10.1016/j.disc.2003.07.006
Reference: [4] Brualdi, R. A., Kirkland, S.: Aztec diamonds and digraphs, and Hankel determinants of Schröder numbers.J. Comb. Theory Ser. B 94 (2005), 334-351. Zbl 1066.05009, MR 2145518, 10.1016/j.jctb.2005.02.001
Reference: [5] Chamberland, M., French, C.: Generalized Catalan numbers and generalized Hankel transformations.J. Integer Seq. 10 (2007). Zbl 1116.11009, MR 2268452
Reference: [6] Chihara, T. S.: An Introduction to Orthogonal Polynomials.Gordon and Breach New York (1978). Zbl 0389.33008, MR 0481884
Reference: [7] Cvetković, A., Rajković, P. M., Ivković, M.: Catalan Numbers, the Hankel transform, and Fibonacci numbers.J. Integer Seq. 5 (2002). Zbl 1041.11014, MR 1919940
Reference: [8] Eğecioğlu, O., Redmond, T., Ryavec, C.: Almost product evaluation of Hankel determinants.Electron. J. Comb. 15, \#R6 (2008). Zbl 1206.05009, MR 2368911, 10.37236/730
Reference: [9] Eğecioğlu, O., Redmond, T., Ryavec, C.: A multilinear operator for almost product evaluation of Hankel determinants.J. Comb. Theory Ser. A 117 (2010), 77-103. Zbl 1227.05031, MR 2557881, 10.1016/j.jcta.2009.03.016
Reference: [10] Armas, M. Garcia, Sethuraman, B. A.: A note on the Hankel transform of the central binomial coefficients.J. Integer Seq. 11 (2008), Article ID 08.5.8. MR 2465389
Reference: [11] Gautschi, W.: Orthogonal polynomials: Applications and computation.In: Acta Numerica Vol. 5 A. Iserles Cambridge University Press Cambridge (1996), 45-119. Zbl 0871.65011, MR 1624591, 10.1017/S0962492900002622
Reference: [12] Gautschi, W.: Orthogonal Polynomials. Computation and Approximation.Oxford University Press Oxford (2004). Zbl 1130.42300, MR 2061539
Reference: [13] Ismail, M. E. H.: Determinants with orthogonal polynomial entries.J. Comput. Appl. Math. 178 (2005), 255-266. Zbl 1083.15011, MR 2127884, 10.1016/j.cam.2004.01.042
Reference: [14] Junod, A.: Hankel determinants and orthogonal polynomials.Expo. Math. 21 (2003), 63-74. Zbl 1153.15304, MR 1955218, 10.1016/S0723-0869(03)80010-5
Reference: [15] Krattenthaler, C.: Advanced determinant calculus: A complement.Linear Algebra Appl. 411 (2005), 68-166. Zbl 1079.05008, MR 2178686, 10.1016/j.laa.2005.06.042
Reference: [16] Lang, W.: On sums of powers of zeros of polynomials.J. Comput. Appl. Math. 89 (1998), 237-256. Zbl 0910.30003, MR 1626522, 10.1016/S0377-0427(97)00240-9
Reference: [17] Layman, J. W.: The Hankel transform and some of its properties.J. Integer Seq. 4 (2001), Article 01.1.5. Electronic only. Zbl 0978.15022, MR 1848942
Reference: [18] Liu, L. L., Wang, Y.: A unified approach to polynomial sequences with only real zeros.Adv. Appl. Math. 38 (2007), 542-560. Zbl 1123.05009, MR 2311051, 10.1016/j.aam.2006.02.003
Reference: [19] MacMahon, P. A.: Combinatorial Analysis, Vols. 1 and 2.Cambridge University Press Cambridge (1915), 1916 reprinted by Chelsea, 1960.
Reference: [20] Mansour, T., Sun, Y.: Identities involving Narayana polynomials and Catalan numbers.Discrete Math. 309 (2009), 4079-4088. Zbl 1191.05016, MR 2537400, 10.1016/j.disc.2008.12.006
Reference: [21] Narayana, T. V.: Sur les treillis formés par les partitions d'un entier et leurs applications à la théorie des probabilités.C. R. Acad. Sci. 240 (1955), 1188-1189 French. Zbl 0064.12705, MR 0070648
Reference: [22] Rajković, P. M., Petković, M. D., Barry, P.: The Hankel transform of the sum of consecutive generalized Catalan numbers.Integral Transforms Spec. Funct. 18 (2007), 285-296. Zbl 1127.11017, MR 2319589, 10.1080/10652460601092303
Reference: [23] Sloane, N. J. A.: The On-Line Encyclopedia of Integer Sequences.available at http://www.research.att.com/ {njas/sequences} Zbl 1159.11327
Reference: [24] Sulanke, R. A.: Counting lattice paths by Narayana polynomials.Electron. J. Comb. 7 (2000), \#R40. Zbl 0953.05006, MR 1779937, 10.37236/1518
Reference: [25] Sulanke, R. A.: The Narayana distribution.J. Statist. Plann. Inference 101 (2002), 311-326. Zbl 1001.05009, MR 1878867, 10.1016/S0378-3758(01)00192-6
Reference: [26] Xin, G.: Proof of the Somos-4 Hankel determinants conjecture.Adv. Appl. Math. 42 (2009), 152-156. Zbl 1169.05304, MR 2493974, 10.1016/j.aam.2008.04.003
.

Files

Files Size Format View
CzechMathJ_62-2012-1_3.pdf 309.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo