Title:
|
A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$ (English) |
Author:
|
Meštrović, Romeo |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
62 |
Issue:
|
1 |
Year:
|
2012 |
Pages:
|
59-65 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In the paper we discuss the following type congruences: $$ \biggl ({np^k\atop mp^k}\biggr ) \equiv \left (m \atop n\right ) \pmod {p^r}, $$ where $p$ is a prime, $n$, $m$, $k$ and $r$ are various positive integers with $n\ge m\ge 1$, $k\ge 1$ and $r\ge 1$. Given positive integers $k$ and $r$, denote by $W(k,r)$ the set of all primes $p$ such that the above congruence holds for every pair of integers $n\ge m\ge 1$. Using Ljunggren's and Jacobsthal's type congruences, we establish several characterizations of sets $W(k,r)$ and inclusion relations between them for various values $k$ and $r$. In particular, we prove that $W(k+i,r)=W(k-1,r)$ for all $k\ge 2$, $i\ge 0$ and $3\le r\le 3k$, and $W(k,r)=W(1,r)$ for all $3\le r\le 6$ and $k\ge 2$. We also noticed that some of these properties may be used for computational purposes related to congruences given above. (English) |
Keyword:
|
congruence |
Keyword:
|
prime powers |
Keyword:
|
Lucas' theorem |
Keyword:
|
Wolstenholme prime |
Keyword:
|
set $W(k,r)$ |
MSC:
|
11A07 |
MSC:
|
11B65 |
idZBL:
|
Zbl 1249.11031 |
idMR:
|
MR2899734 |
DOI:
|
10.1007/s10587-012-0016-7 |
. |
Date available:
|
2012-03-05T07:11:08Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/142040 |
. |
Reference:
|
[1] Brun, V., Stubban, J. O., Fjelstad, J. E., Lyche, R. Tambs, Aubert, K. E., Ljunggren, W., Jacobsthal, E.: On the divisibility of the difference between two binomial coefficients.11. Skand. Mat.-Kongr., Trondheim 1949 42-54 (1952). MR 0053125 |
Reference:
|
[2] Glaisher, J. W. L.: On the residues of the sums of the inverse powers of numbers in arithmetical progression.Quart. J. 32 (1900), 271-288. |
Reference:
|
[3] Granville, A.: Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers.Organic mathematics. Proceedings of the workshop, Simon Fraser University, Burnaby, Canada, December 12-14, 1995. Providence, RI: American Mathematical Society. CMS Conf. Proc. 20 253-276 (1997), J. Borwein et al. Zbl 0903.11005, MR 1483922 |
Reference:
|
[4] Kazandzidis, G. S.: Congruences on the binomial coefficients.Bull. Soc. Math. Grèce, N. Ser. 9 (1968), 1-12. Zbl 0179.06601, MR 0265271 |
Reference:
|
[5] Lucas, E.: Sur les congruences des nombres eulériens et les coefficients différentiels des functions trigonométriques suivant un module premier.Bull. S. M. F. 6 (1878), 49-54 French. MR 1503769 |
Reference:
|
[6] McIntosh, R. J.: On the converse of Wolstenholme's Theorem.Acta Arith. 71 (1995), 381-389. Zbl 0829.11003, MR 1339137, 10.4064/aa-71-4-381-389 |
Reference:
|
[7] McIntosh, R. J., Roettger, E. L.: A search for Fibonacci-Wieferich and Wolstenholme primes.Math. Comput. 76 (2007), 2087-2094. Zbl 1139.11003, MR 2336284, 10.1090/S0025-5718-07-01955-2 |
Reference:
|
[8] Meštrović, R.: A note on the congruence ${nd\choose md}\equiv{n\choose m}\pmod{q}$.Am. Math. Mon. 116 (2009), 75-77. MR 2478756 |
Reference:
|
[9] Sun, Z.-W., Davis, D. M.: Combinatorial congruences modulo prime powers.Trans. Am. Math. Soc. 359 (2007), 5525-5553. Zbl 1119.11016, MR 2327041, 10.1090/S0002-9947-07-04236-5 |
Reference:
|
[10] Zhao, J.: Bernoulli numbers, Wolstenholme's theorem, and $p^5$ variations of Lucas' theorem.J. Number Theory 123 (2007), 18-26. MR 2295427, 10.1016/j.jnt.2006.05.005 |
. |