Previous |  Up |  Next

Article

Title: Almost sure asymptotic behaviour of the $r$-neighbourhood surface area of Brownian paths (English)
Author: Honzl, Ondřej
Author: Rataj, Jan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 1
Year: 2012
Pages: 67-75
Summary lang: English
.
Category: math
.
Summary: We show that whenever the $q$-dimensional Minkowski content of a subset $A\subset \mathbb R^d$ exists and is finite and positive, then the “S-content” defined analogously as the Minkowski content, but with volume replaced by surface area, exists as well and equals the Minkowski content. As a corollary, we obtain the almost sure asymptotic behaviour of the surface area of the Wiener sausage in $\mathbb R^d$, $d\geq 3$. (English)
Keyword: Minkowski content
Keyword: Kneser function
Keyword: Brownian motion
Keyword: Wiener sausage
MSC: 28A75
MSC: 52A20
MSC: 52A38
MSC: 60D05
MSC: 60J65
idZBL: Zbl 1249.28003
idMR: MR2899735
DOI: 10.1007/s10587-012-0017-6
.
Date available: 2012-03-05T07:11:56Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142041
.
Reference: [1] Berezhkovskii, A. M., Makhnovskii, Yu. A., Suris, R. A.: Wiener sausage volume moments.J. Stat. Phys. 57 (1989), 333-346. MR 1031416, 10.1007/BF01023647
Reference: [2] Gall, J.-F. Le: Fluctuation results for the Wiener sausage.Ann. Probab. 16 (1988), 991-1018. Zbl 0665.60080, MR 0942751, 10.1214/aop/1176991673
Reference: [3] Kneser, M.: Über den Rand von Parallelkörpern.Math. Nachr. 5 (1951), 241-251 German. Zbl 0042.40802, MR 0042729, 10.1002/mana.19510050309
Reference: [4] Rataj, J., Schmidt, V., Spodarev, E.: On the expected surface area of the Wiener sausage.Math. Nachr. 282 (2009), 591-603. Zbl 1166.60049, MR 2504619, 10.1002/mana.200610757
Reference: [5] Rataj, J., Winter, S.: On volume and surface area of parallel sets.Indiana Univ. Math. J. 59 (2010), 1661-1685. MR 2865426, 10.1512/iumj.2010.59.4165
Reference: [6] Spitzer, F.: Electrostatic capacity, heat-flow, and Brownian motion.Z. Wahrscheinlichkeitstheor. Verw. Geb. 3 (1964), 110-121. Zbl 0126.33505, MR 0172343, 10.1007/BF00535970
Reference: [7] Stachó, L. L.: On the volume function of parallel sets.Acta Sci. Math. 38 (1976), 365-374. Zbl 0342.52014, MR 0442202
.

Files

Files Size Format View
CzechMathJ_62-2012-1_5.pdf 240.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo