Previous |  Up |  Next

Article

Title: Integrals and Banach spaces for finite order distributions (English)
Author: Talvila, Erik
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 1
Year: 2012
Pages: 77-104
Summary lang: English
.
Category: math
.
Summary: Let $\mathcal B_c$ denote the real-valued functions continuous on the extended real line and vanishing at $-\infty $. Let $\mathcal B_r$ denote the functions that are left continuous, have a right limit at each point and vanish at $-\infty $. Define $\mathcal A^n_c$ to be the space of tempered distributions that are the $n$th distributional derivative of a unique function in $\mathcal B_c$. Similarly with $\mathcal A^n_r$ from $\mathcal B_r$. A type of integral is defined on distributions in $\mathcal A^n_c$ and $\mathcal A^n_r$. The multipliers are iterated integrals of functions of bounded variation. For each $n\in \mathbb N$, the spaces $\mathcal A^n_c$ and $\mathcal A^n_r$ are Banach spaces, Banach lattices and Banach algebras isometrically isomorphic to $\mathcal B_c$ and $\mathcal B_r$, respectively. Under the ordering in this lattice, if a distribution is integrable then its absolute value is integrable. The dual space is isometrically isomorphic to the functions of bounded variation. The space $\mathcal A_c^1$ is the completion of the $L^1$ functions in the Alexiewicz norm. The space $\mathcal A_r^1$ contains all finite signed Borel measures. Many of the usual properties of integrals hold: Hölder inequality, second mean value theorem, continuity in norm, linear change of variables, a convergence theorem. (English)
Keyword: regulated function
Keyword: regulated primitive integral
Keyword: Banach space
Keyword: Banach lattice
Keyword: Banach algebra
Keyword: Schwartz distribution
Keyword: generalized function
Keyword: distributional Denjoy integral
Keyword: continuous primitive integral
Keyword: Henstock-Kurzweil integral
Keyword: primitive
MSC: 26A39
MSC: 46B42
MSC: 46E15
MSC: 46F10
MSC: 46G12
MSC: 46J10
idZBL: Zbl 1249.26012
idMR: MR2899736
DOI: 10.1007/s10587-012-0018-5
.
Date available: 2012-03-05T07:13:47Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142042
.
Reference: [1] Alexiewicz, A.: Linear functionals on Denjoy-integrable functions.Colloq. Math. 1 (1948), 289-293. Zbl 0037.32302, MR 0030120, 10.4064/cm-1-4-289-293
Reference: [2] Aliprantis, C. D., Border, K. C: Infinite Dimensional Analysis. A Hitchhiker's Guide.Springer, Berlin (2006). Zbl 1156.46001, MR 2378491
Reference: [3] Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems.Oxford Mathematical Monographs. Oxford: Clarendon Press (2000). Zbl 0957.49001, MR 1857292
Reference: [4] Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory.Springer, New York (2001). Zbl 0959.31001, MR 1805196
Reference: [5] Burkill, J. C.: An integral for distributions.Proc. Camb. Philos. Soc. 53 (1957), 821-824. Zbl 0081.11303, MR 0094703, 10.1017/S030500410003293X
Reference: [6] Čelidze, V. G., Džvaršeĭšvili, A. G.: The Theory of the Denjoy Integral and Some Applications. Transl. from the Russian by P. S. Bullen.World Scientific, Singapore (1989). MR 1036270
Reference: [7] Das, A. G., Sahu, G.: An equivalent Denjoy type definition of the generalized Henstock Stieltjes integral.Bull. Inst. Math., Acad. Sin. 30 (2002), 27-49. Zbl 1007.26004, MR 1891364
Reference: [8] Dunford, N., Schwartz, J. T.: Linear Operators.Part I: General theory. With the assistance of William G. Bade and Robert G. Bartle. Repr. of the orig., publ. 1959 by John Wiley & Sons Ltd., Paperback ed. New York etc.: John Wiley & Sons Ltd. xiv (1988). Zbl 0635.47003, MR 1009162
Reference: [9] Fleming, R. J., Jamison, J. E.: Isometries on Banach Spaces: Function spaces.Chapman and Hall, Boca Raton (2003). Zbl 1011.46001, MR 1957004
Reference: [10] Folland, G. B.: Real Analysis. Modern Techniques and Their Applications. 2nd ed.Wiley, New York (1999). Zbl 0924.28001, MR 1681462
Reference: [11] Fraňkova, D.: Regulated functions.Math. Bohem. 116 (1991), 20-59. Zbl 0724.26009, MR 1100424
Reference: [12] Friedlander, F. G., Joshi, M.: Introduction to the Theory of Distributions.Cambridge etc.: Cambridge University Press. III (1982). MR 0779092
Reference: [13] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.American Mathematical Society, Providence (1994). Zbl 0807.26004, MR 1288751
Reference: [14] Kaniuth, E.: A Course in Commutative Banach Algebras.Springer, New York (2009). Zbl 1190.46001, MR 2458901
Reference: [15] Kannan, R., Krueger, C. K.: Advanced Analysis on the Real Line.Springer, New York (1996). Zbl 0855.26001, MR 1390758
Reference: [16] Lee, P. Y., Výborný, R.: The Integral: An Easy Approach after Kurzweil and Henstock.Cambridge University Press, Cambridge (2000). MR 1756319
Reference: [17] Lane, S. Mac, Birkhoff, G.: Algebra.Macmillan, New York (1979). MR 0524398
Reference: [18] McLeod, R. M.: The Generalized Riemann Integral.The Mathematical Association of America, Washington (1980). Zbl 0486.26005, MR 0588510
Reference: [19] Mikusiński, J., Sikorski, R.: The elementary theory of distributions. I.Rozprawy Mat. 12 (1957), 52 pp. Zbl 0078.11101, MR 0094702
Reference: [20] Musielak, J. A.: A note on integrals of distributions.Pr. Mat. 8 (1963), 1-7. Zbl 0202.40301, MR 0184080
Reference: [21] Oberguggenberger, M.: Multiplication of Distributions and Applications to Partial Differential Equations.Longman Scientific and Technical, Harlow (1992). Zbl 0818.46036, MR 1187755
Reference: [22] Russell, A. M.: Necessary and sufficient conditions for the existence of a generalized Stieltjes integral.J. Aust. Math. Soc., Ser. A 26 (1978), 501-510. Zbl 0398.26011, MR 0520103, 10.1017/S1446788700012015
Reference: [23] Schwartz, L.: Thèorie des Distributions. Nouvelle ed., entie`rement corr., refondue et augm.Hermann, Paris (1978), French. MR 0209834
Reference: [24] Sikorski, R.: Integrals of distributions.Stud. Math. 20 (1961), 119-139. Zbl 0103.09102, MR 0126714, 10.4064/sm-20-2-119-139
Reference: [25] Talvila, E.: Limits and Henstock integrals of products.Real Anal. Exch. 25 (1999/2000), 907-918. MR 1778542, 10.2307/44154045
Reference: [26] Talvila, E.: The distributional Denjoy integral.Real Anal. Exch. 33 (2008), 51-82. Zbl 1154.26011, MR 2402863, 10.14321/realanalexch.33.1.0051
Reference: [27] Talvila, E.: Convolutions with the continuous primitive integral.Abstr. Appl. Anal. 2009 (2009), 18 pp. Zbl 1192.46039, MR 2559282
Reference: [28] Talvila, E.: The regulated primitive integral.Ill. J. Math. 53 (2009), 1187-1219. Zbl 1207.26018, MR 2741185, 10.1215/ijm/1290435346
Reference: [29] Thomson, B. S.: Characterizations of an indefinite Riemann integral.Real Anal. Exch. 35 (2010), 487-492. Zbl 1222.26009, MR 2683613, 10.14321/realanalexch.35.2.0487
Reference: [30] Zemanian, A. H.: Distribution Theory and Transform Analysis. An Introduction to Generalized Functions, with Applications. Reprint, slightly corrected.Dover Publications, New York (1987). Zbl 0643.46028, MR 0918977
Reference: [31] Ziemer, W. P.: Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation.Springer-Verlag, Berlin (1989). Zbl 0692.46022, MR 1014685
.

Files

Files Size Format View
CzechMathJ_62-2012-1_6.pdf 423.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo