Previous |  Up |  Next

Article

Title: More examples of invariance under twisting (English)
Author: Panaite, Florin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 1
Year: 2012
Pages: 187-195
Summary lang: English
.
Category: math
.
Summary: The so-called “invariance under twisting” for twisted tensor products of algebras is a result stating that, if we start with a twisted tensor product, under certain circumstances we can “deform” the twisting map and we obtain a new twisted tensor product, isomorphic to the given one. It was proved before that a number of independent and previously unrelated results from Hopf algebra theory are particular cases of this theorem. In this article we show that some more results from literature are particular cases of invariance under twisting, for instance a result of Beattie-Chen-Zhang that implies the Blattner-Montgomery duality theorem. (English)
Keyword: twisted tensor product
Keyword: invariance under twisting
Keyword: duality theorem
MSC: 16S40
MSC: 16T05
MSC: 16W99
idZBL: Zbl 1249.16031
idMR: MR2899744
DOI: 10.1007/s10587-012-0005-x
.
Date available: 2012-03-05T07:23:11Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142050
.
Reference: [1] Beattie, M., Chen, C.-Y., Zhang, J. J.: Twisted Hopf comodule algebras.Commun. Algebra 24 (1996), 1759-1775. Zbl 0851.16031, MR 1386496, 10.1080/00927879608825669
Reference: [2] Čap, A., Schichl, H., Vanžura, J.: On twisted tensor products of algebras.Commun. Algebra 23 (1995), 4701-4735. Zbl 0842.16005, MR 1352565, 10.1080/00927879508825496
Reference: [3] Luigi, C. Di, Guccione, J. A., Guccione, J. J.: Brzeziński's crossed products and braided Hopf crossed products.Commun. Algebra 32 (2004), 3563-3580. Zbl 1080.16040, MR 2097479, 10.1081/AGB-120039631
Reference: [4] Fiore, G.: On the decoupling of the homogeneous and inhomogeneous parts in inhomogeneous quantum groups.J. Phys. A, Math. Gen. 35 (2002), 657-678. Zbl 1041.81064, MR 1957140, 10.1088/0305-4470/35/3/312
Reference: [5] Fiore, G., Steinacker, H., Wess, J.: Unbraiding the braided tensor product.J. Math. Phys. 44 (2003), 1297-1321. Zbl 1062.16044, MR 1958269, 10.1063/1.1522818
Reference: [6] Guccione, J. A., Guccione, J. J.: Semiquasitriangular Hopf algebras.Electronic preprint arXiv:math.QA/0302052.
Reference: [7] Guccione, J. A., Guccione, J. J.: Theory of braided Hopf crossed products.J. Algebra 261 (2003), 54-101. Zbl 1017.16032, MR 1967157, 10.1016/S0021-8693(02)00546-X
Reference: [8] Martínez, P. Jara, Peña, J. López, Panaite, F., Oystaeyen, F. Van: On iterated twisted tensor products of algebras.Int. J. Math. 19 (2008), 1053-1101. MR 2458561, 10.1142/S0129167X08004996
Reference: [9] Majid, S.: Doubles of quasitriangular Hopf algebras.Commun. Algebra 19 (1991), 3061-3073. Zbl 0767.16014, MR 1132774, 10.1080/00927879108824306
Reference: [10] Năstăsescu, C., Panaite, F., Oystaeyen, F. Van: External homogenization for Hopf algebras: Applications to Maschke's theorem.Algebr. Represent. Theory 2 (1999), 211-226. MR 1715183, 10.1023/A:1009931309850
Reference: [11] Daele, A. Van, Keer, S. Van: The Yang-Baxter and pentagon equation.Compos. Math. 91 (1994), 201-221. Zbl 0811.17014, MR 1273649
.

Files

Files Size Format View
CzechMathJ_62-2012-1_14.pdf 242.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo