Title:
|
More examples of invariance under twisting (English) |
Author:
|
Panaite, Florin |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
62 |
Issue:
|
1 |
Year:
|
2012 |
Pages:
|
187-195 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The so-called “invariance under twisting” for twisted tensor products of algebras is a result stating that, if we start with a twisted tensor product, under certain circumstances we can “deform” the twisting map and we obtain a new twisted tensor product, isomorphic to the given one. It was proved before that a number of independent and previously unrelated results from Hopf algebra theory are particular cases of this theorem. In this article we show that some more results from literature are particular cases of invariance under twisting, for instance a result of Beattie-Chen-Zhang that implies the Blattner-Montgomery duality theorem. (English) |
Keyword:
|
twisted tensor product |
Keyword:
|
invariance under twisting |
Keyword:
|
duality theorem |
MSC:
|
16S40 |
MSC:
|
16T05 |
MSC:
|
16W99 |
idZBL:
|
Zbl 1249.16031 |
idMR:
|
MR2899744 |
DOI:
|
10.1007/s10587-012-0005-x |
. |
Date available:
|
2012-03-05T07:23:11Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/142050 |
. |
Reference:
|
[1] Beattie, M., Chen, C.-Y., Zhang, J. J.: Twisted Hopf comodule algebras.Commun. Algebra 24 (1996), 1759-1775. Zbl 0851.16031, MR 1386496, 10.1080/00927879608825669 |
Reference:
|
[2] Čap, A., Schichl, H., Vanžura, J.: On twisted tensor products of algebras.Commun. Algebra 23 (1995), 4701-4735. Zbl 0842.16005, MR 1352565, 10.1080/00927879508825496 |
Reference:
|
[3] Luigi, C. Di, Guccione, J. A., Guccione, J. J.: Brzeziński's crossed products and braided Hopf crossed products.Commun. Algebra 32 (2004), 3563-3580. Zbl 1080.16040, MR 2097479, 10.1081/AGB-120039631 |
Reference:
|
[4] Fiore, G.: On the decoupling of the homogeneous and inhomogeneous parts in inhomogeneous quantum groups.J. Phys. A, Math. Gen. 35 (2002), 657-678. Zbl 1041.81064, MR 1957140, 10.1088/0305-4470/35/3/312 |
Reference:
|
[5] Fiore, G., Steinacker, H., Wess, J.: Unbraiding the braided tensor product.J. Math. Phys. 44 (2003), 1297-1321. Zbl 1062.16044, MR 1958269, 10.1063/1.1522818 |
Reference:
|
[6] Guccione, J. A., Guccione, J. J.: Semiquasitriangular Hopf algebras.Electronic preprint arXiv:math.QA/0302052. |
Reference:
|
[7] Guccione, J. A., Guccione, J. J.: Theory of braided Hopf crossed products.J. Algebra 261 (2003), 54-101. Zbl 1017.16032, MR 1967157, 10.1016/S0021-8693(02)00546-X |
Reference:
|
[8] Martínez, P. Jara, Peña, J. López, Panaite, F., Oystaeyen, F. Van: On iterated twisted tensor products of algebras.Int. J. Math. 19 (2008), 1053-1101. MR 2458561, 10.1142/S0129167X08004996 |
Reference:
|
[9] Majid, S.: Doubles of quasitriangular Hopf algebras.Commun. Algebra 19 (1991), 3061-3073. Zbl 0767.16014, MR 1132774, 10.1080/00927879108824306 |
Reference:
|
[10] Năstăsescu, C., Panaite, F., Oystaeyen, F. Van: External homogenization for Hopf algebras: Applications to Maschke's theorem.Algebr. Represent. Theory 2 (1999), 211-226. MR 1715183, 10.1023/A:1009931309850 |
Reference:
|
[11] Daele, A. Van, Keer, S. Van: The Yang-Baxter and pentagon equation.Compos. Math. 91 (1994), 201-221. Zbl 0811.17014, MR 1273649 |
. |