Title:
|
A note on topological groups and their remainders (English) |
Author:
|
Peng, Liang-Xue |
Author:
|
He, Yu-Feng |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
62 |
Issue:
|
1 |
Year:
|
2012 |
Pages:
|
197-214 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this note we first give a summary that on property of a remainder of a non-locally compact topological group $G$ in a compactification $bG$ makes the remainder and the topological group $G$ all separable and metrizable. If a non-locally compact topological group $G$ has a compactification $bG$ such that the remainder $bG\setminus G$ of $G$ belongs to $\mathcal {P}$, then $G$ and $bG\setminus G$ are separable and metrizable, where $\mathcal {P}$ is a class of spaces which satisfies the following conditions: (1) if $X\in \mathcal {P}$, then every compact subset of the space $X$ is a $G_\delta $-set of $X$; (2) if $X\in \mathcal {P}$ and $X$ is not locally compact, then $X$ is not locally countably compact; (3) if $X\in \mathcal {P}$ and $X$ is a Lindelöf $p$-space, then $X$ is metrizable. Some known conclusions on topological groups and their remainders can be obtained from this conclusion. As a corollary, we have that if a non-locally compact topological group $G$ has a compactification $bG$ such that compact subsets of $bG\setminus G$ are $G_{\delta }$-sets in a uniform way (i.e., $bG\setminus G$ is CSS), then $G$ and $bG\setminus G$ are separable and metrizable spaces. In the last part of this note, we prove that if a non-locally compact topological group $G$ has a compactification $bG$ such that the remainder $bG\setminus G$ has a point-countable weak base and has a dense subset $D$ such that every point of the set $D$ has countable pseudo-character in the remainder $bG\setminus G$ (or the subspace $D$ has countable $\pi $-character), then $G$ and $bG\setminus G$ are both separable and metrizable. (English) |
Keyword:
|
topological group |
Keyword:
|
remainder |
Keyword:
|
compactification |
Keyword:
|
metrizable space |
Keyword:
|
weak base |
MSC:
|
54A25 |
MSC:
|
54B05 |
MSC:
|
54D40 |
MSC:
|
54E99 |
idZBL:
|
Zbl 1249.54058 |
idMR:
|
MR2899745 |
DOI:
|
10.1007/s10587-012-0005-x |
. |
Date available:
|
2012-03-05T07:24:58Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/142051 |
. |
Reference:
|
[1] Arhangel'skii, A. V.: On a class of spaces containing all metric and locally compact spaces.Mat. Sb. 67 (1965), 55-58 Russian English transl. in: Amer. Math. Soc. Transl. (92) (1970), 1-39. MR 0190889 |
Reference:
|
[2] Arhangel'skii, A. V.: Remainders in compactifications and generalized metrizability properties.Topology Appl. 150 (2005), 79-90. Zbl 1075.54012, MR 2133669, 10.1016/j.topol.2004.10.015 |
Reference:
|
[3] Arhangel'skii, A. V.: More on remainders close to metrizable spaces.Topology Appl. 154 (2007), 1084-1088. Zbl 1144.54001, MR 2298623, 10.1016/j.topol.2006.10.008 |
Reference:
|
[4] Arhangel'skii, A. V.: Fist countability, tightness, and other cardinal invariants in remainders of topological groups.Topology Appl. 154 (2007), 2950-2961. MR 2355880, 10.1016/j.topol.2007.05.013 |
Reference:
|
[5] Arhangel'skii, A. V.: Two types of remainders of topological groups.Commentat. Math. Univ. Carol. 49 (2008), 119-126. Zbl 1212.54086, MR 2433629 |
Reference:
|
[6] Arhangel'skii, A. V.: A study of remainders of topological groups.Fundam. Math. 203 (2009), 165-178. Zbl 1182.54043, MR 2496236, 10.4064/fm203-2-3 |
Reference:
|
[7] Arhangel'skii, A. V.: Some aspects of topological algebra and remainders of topological groups.Topol. Proc. 33 (2009), 13-28. Zbl 1171.54028, MR 2471559 |
Reference:
|
[8] Bennett, H., Byerly, R., Lutzer, D.: Compact $G_{\delta} $ sets.Topology Appl. 153 (2006), 2169-2181. Zbl 1101.54034, MR 2239079, 10.1016/j.topol.2005.08.011 |
Reference:
|
[9] Chaber, J.: Conditions which imply compactness in countably compact spaces.Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 24 (1976), 993-998. MR 0515000 |
Reference:
|
[10] Douwen, E. K. van, Pfeffer, W. F.: Some properties of the Sorgenfrey line and related spaces.Pac. J. Math. 81 (1979), 371-377. MR 0547605, 10.2140/pjm.1979.81.371 |
Reference:
|
[11] Engelking, R.: General Topology.Rev. and compl. ed. Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[12] Gerlits, J., Juhász, I., Szentmiklóssy, Z.: Two improvements on Tkačenko's addition theorem.Commentat. Math. Univ. Carol. 46 (2005), 705-710. Zbl 1121.54041, MR 2259500 |
Reference:
|
[13] Gruenhage, G.: Generalized Metric Spaces.K. Kunen and J. E. Vaughan Handbook of set-theoretic topology. North-Holland, Amsterdam (1984), 423-501. Zbl 0555.54015, MR 0776629 |
Reference:
|
[14] Gruenhage, G., Michael, E., Tanaka, Y.: Spaces determined by point-countable covers.Pac. J. Math. 113 (1984), 303-332. Zbl 0561.54016, MR 0749538, 10.2140/pjm.1984.113.303 |
Reference:
|
[15] Henriksen, M., Isbell, J. R.: Some properties of compactifications.Duke Math. J. 25 (1958), 83-105. Zbl 0081.38604, MR 0096196, 10.1215/S0012-7094-58-02509-2 |
Reference:
|
[16] Lin, S., Tanaka, Y.: Point-countable $k$-networks, closed maps, and related results.Topology Appl. 59 (1994), 79-86. Zbl 0817.54025, MR 1293119, 10.1016/0166-8641(94)90101-5 |
Reference:
|
[17] Liu, Ch.: On weak bases.Topology Appl. 150 (2005), 91-99. Zbl 1081.54026, MR 2133670, 10.1016/j.topol.2004.11.008 |
Reference:
|
[18] Liu, Ch.: Remainders in compactifications of topological groups.Topology Appl. 156 (2009), 849-854. Zbl 1162.54007, MR 2498916, 10.1016/j.topol.2008.09.012 |
Reference:
|
[19] Liu, Ch., Lin, S.: Generalized metric spaces with algebaric structures.Topology Appl. 157 (2010), 1966-1974. MR 2646429, 10.1016/j.topol.2010.04.010 |
Reference:
|
[20] Martin, H. W.: Metrizability of $M$-spaces.Can. J. Math. 25 (1973), 840-841. Zbl 0247.54031, MR 0328875, 10.4153/CJM-1973-086-0 |
Reference:
|
[21] Peng, L.-X.: The D-property of some Lindelöf spaces and related conclusions.Topology Appl. 154 (2007), 469-475. Zbl 1110.54014, MR 2278697, 10.1016/j.topol.2006.06.003 |
Reference:
|
[22] Peng, L.-X.: A note on $D$-spaces and infinite unions.Topology Appl. 154 (2007), 2223-2227. Zbl 1133.54012, MR 2328005, 10.1016/j.topol.2007.01.020 |
Reference:
|
[23] Peng, L.-X., Wang, L. X.: On $ CSS$ spaces and related conclusions.Chinese Acta Math. Sci., Ser. A, Chin. Ed. 30 (2010), 358-363. MR 2664833 |
Reference:
|
[24] Roelcke, W., Dierolf, S.: Uniform Structures on Topological Groups and their Questions.McGraw-Hill International Book Company, New York (1981). MR 0644485 |
Reference:
|
[25] Siwiec, F.: On defining a space by a weak base.Pac. J. Math. 52 (1974), 233-245. Zbl 0285.54022, MR 0350706, 10.2140/pjm.1974.52.233 |
Reference:
|
[26] Tkačenko, M.: Introduction to topological groups.Topology Appl. 86 (1998), 179-231. Zbl 0955.54013, MR 1623960, 10.1016/S0166-8641(98)00051-0 |
. |