Previous |  Up |  Next

Article

Title: A note on topological groups and their remainders (English)
Author: Peng, Liang-Xue
Author: He, Yu-Feng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 1
Year: 2012
Pages: 197-214
Summary lang: English
.
Category: math
.
Summary: In this note we first give a summary that on property of a remainder of a non-locally compact topological group $G$ in a compactification $bG$ makes the remainder and the topological group $G$ all separable and metrizable. If a non-locally compact topological group $G$ has a compactification $bG$ such that the remainder $bG\setminus G$ of $G$ belongs to $\mathcal {P}$, then $G$ and $bG\setminus G$ are separable and metrizable, where $\mathcal {P}$ is a class of spaces which satisfies the following conditions: (1) if $X\in \mathcal {P}$, then every compact subset of the space $X$ is a $G_\delta $-set of $X$; (2) if $X\in \mathcal {P}$ and $X$ is not locally compact, then $X$ is not locally countably compact; (3) if $X\in \mathcal {P}$ and $X$ is a Lindelöf $p$-space, then $X$ is metrizable. Some known conclusions on topological groups and their remainders can be obtained from this conclusion. As a corollary, we have that if a non-locally compact topological group $G$ has a compactification $bG$ such that compact subsets of $bG\setminus G$ are $G_{\delta }$-sets in a uniform way (i.e., $bG\setminus G$ is CSS), then $G$ and $bG\setminus G$ are separable and metrizable spaces. In the last part of this note, we prove that if a non-locally compact topological group $G$ has a compactification $bG$ such that the remainder $bG\setminus G$ has a point-countable weak base and has a dense subset $D$ such that every point of the set $D$ has countable pseudo-character in the remainder $bG\setminus G$ (or the subspace $D$ has countable $\pi $-character), then $G$ and $bG\setminus G$ are both separable and metrizable. (English)
Keyword: topological group
Keyword: remainder
Keyword: compactification
Keyword: metrizable space
Keyword: weak base
MSC: 54A25
MSC: 54B05
MSC: 54D40
MSC: 54E99
idZBL: Zbl 1249.54058
idMR: MR2899745
DOI: 10.1007/s10587-012-0005-x
.
Date available: 2012-03-05T07:24:58Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142051
.
Reference: [1] Arhangel'skii, A. V.: On a class of spaces containing all metric and locally compact spaces.Mat. Sb. 67 (1965), 55-58 Russian English transl. in: Amer. Math. Soc. Transl. (92) (1970), 1-39. MR 0190889
Reference: [2] Arhangel'skii, A. V.: Remainders in compactifications and generalized metrizability properties.Topology Appl. 150 (2005), 79-90. Zbl 1075.54012, MR 2133669, 10.1016/j.topol.2004.10.015
Reference: [3] Arhangel'skii, A. V.: More on remainders close to metrizable spaces.Topology Appl. 154 (2007), 1084-1088. Zbl 1144.54001, MR 2298623, 10.1016/j.topol.2006.10.008
Reference: [4] Arhangel'skii, A. V.: Fist countability, tightness, and other cardinal invariants in remainders of topological groups.Topology Appl. 154 (2007), 2950-2961. MR 2355880, 10.1016/j.topol.2007.05.013
Reference: [5] Arhangel'skii, A. V.: Two types of remainders of topological groups.Commentat. Math. Univ. Carol. 49 (2008), 119-126. Zbl 1212.54086, MR 2433629
Reference: [6] Arhangel'skii, A. V.: A study of remainders of topological groups.Fundam. Math. 203 (2009), 165-178. Zbl 1182.54043, MR 2496236, 10.4064/fm203-2-3
Reference: [7] Arhangel'skii, A. V.: Some aspects of topological algebra and remainders of topological groups.Topol. Proc. 33 (2009), 13-28. Zbl 1171.54028, MR 2471559
Reference: [8] Bennett, H., Byerly, R., Lutzer, D.: Compact $G_{\delta} $ sets.Topology Appl. 153 (2006), 2169-2181. Zbl 1101.54034, MR 2239079, 10.1016/j.topol.2005.08.011
Reference: [9] Chaber, J.: Conditions which imply compactness in countably compact spaces.Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 24 (1976), 993-998. MR 0515000
Reference: [10] Douwen, E. K. van, Pfeffer, W. F.: Some properties of the Sorgenfrey line and related spaces.Pac. J. Math. 81 (1979), 371-377. MR 0547605, 10.2140/pjm.1979.81.371
Reference: [11] Engelking, R.: General Topology.Rev. and compl. ed. Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin 1989. Zbl 0684.54001, MR 1039321
Reference: [12] Gerlits, J., Juhász, I., Szentmiklóssy, Z.: Two improvements on Tkačenko's addition theorem.Commentat. Math. Univ. Carol. 46 (2005), 705-710. Zbl 1121.54041, MR 2259500
Reference: [13] Gruenhage, G.: Generalized Metric Spaces.K. Kunen and J. E. Vaughan Handbook of set-theoretic topology. North-Holland, Amsterdam (1984), 423-501. Zbl 0555.54015, MR 0776629
Reference: [14] Gruenhage, G., Michael, E., Tanaka, Y.: Spaces determined by point-countable covers.Pac. J. Math. 113 (1984), 303-332. Zbl 0561.54016, MR 0749538, 10.2140/pjm.1984.113.303
Reference: [15] Henriksen, M., Isbell, J. R.: Some properties of compactifications.Duke Math. J. 25 (1958), 83-105. Zbl 0081.38604, MR 0096196, 10.1215/S0012-7094-58-02509-2
Reference: [16] Lin, S., Tanaka, Y.: Point-countable $k$-networks, closed maps, and related results.Topology Appl. 59 (1994), 79-86. Zbl 0817.54025, MR 1293119, 10.1016/0166-8641(94)90101-5
Reference: [17] Liu, Ch.: On weak bases.Topology Appl. 150 (2005), 91-99. Zbl 1081.54026, MR 2133670, 10.1016/j.topol.2004.11.008
Reference: [18] Liu, Ch.: Remainders in compactifications of topological groups.Topology Appl. 156 (2009), 849-854. Zbl 1162.54007, MR 2498916, 10.1016/j.topol.2008.09.012
Reference: [19] Liu, Ch., Lin, S.: Generalized metric spaces with algebaric structures.Topology Appl. 157 (2010), 1966-1974. MR 2646429, 10.1016/j.topol.2010.04.010
Reference: [20] Martin, H. W.: Metrizability of $M$-spaces.Can. J. Math. 25 (1973), 840-841. Zbl 0247.54031, MR 0328875, 10.4153/CJM-1973-086-0
Reference: [21] Peng, L.-X.: The D-property of some Lindelöf spaces and related conclusions.Topology Appl. 154 (2007), 469-475. Zbl 1110.54014, MR 2278697, 10.1016/j.topol.2006.06.003
Reference: [22] Peng, L.-X.: A note on $D$-spaces and infinite unions.Topology Appl. 154 (2007), 2223-2227. Zbl 1133.54012, MR 2328005, 10.1016/j.topol.2007.01.020
Reference: [23] Peng, L.-X., Wang, L. X.: On $ CSS$ spaces and related conclusions.Chinese Acta Math. Sci., Ser. A, Chin. Ed. 30 (2010), 358-363. MR 2664833
Reference: [24] Roelcke, W., Dierolf, S.: Uniform Structures on Topological Groups and their Questions.McGraw-Hill International Book Company, New York (1981). MR 0644485
Reference: [25] Siwiec, F.: On defining a space by a weak base.Pac. J. Math. 52 (1974), 233-245. Zbl 0285.54022, MR 0350706, 10.2140/pjm.1974.52.233
Reference: [26] Tkačenko, M.: Introduction to topological groups.Topology Appl. 86 (1998), 179-231. Zbl 0955.54013, MR 1623960, 10.1016/S0166-8641(98)00051-0
.

Files

Files Size Format View
CzechMathJ_62-2012-1_15.pdf 313.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo