Previous |  Up |  Next

Article

Title: Ordering the non-starlike trees with large reverse Wiener indices (English)
Author: Li, Shuxian
Author: Zhou, Bo
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 1
Year: 2012
Pages: 215-233
Summary lang: English
.
Category: math
.
Summary: The reverse Wiener index of a connected graph $G$ is defined as \[ \Lambda (G)=\frac {1}{2}n(n-1)d-W(G), \] where $n$ is the number of vertices, $d$ is the diameter, and $W(G)$ is the Wiener index (the sum of distances between all unordered pairs of vertices) of $G$. We determine the $n$-vertex non-starlike trees with the first four largest reverse Wiener indices for $n\ge 8$, and the $n$-vertex non-starlike non-caterpillar trees with the first four largest reverse Wiener indices for $n\ge 10$. (English)
Keyword: distance
Keyword: diameter
Keyword: Wiener index
Keyword: reverse Wiener index
Keyword: trees
Keyword: starlike trees
Keyword: caterpillars
MSC: 05C12
MSC: 05C35
MSC: 05C90
idZBL: Zbl 1249.05097
idMR: MR2899746
DOI: 10.1007/s10587-012-0007-8
.
Date available: 2012-03-05T07:26:44Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142052
.
Reference: [1] Althöfer, I.: Average distances in undirected graphs and the removal of vertices.J. Comb. Theory, Ser. B 48 (1990), 140-142. Zbl 0688.05045, MR 1047559, 10.1016/0095-8956(90)90136-N
Reference: [2] Balaban, A. T., Mills, D., Ivanciuc, O., Basak, S. C.: Reverse Wiener indices.Croat. Chem. Acta 73 (2000), 923-941.
Reference: [3] Cai, X., Zhou, B.: Reverse Wiener indices of connected graphs.MATCH Commun. Math. Comput. Chem. 60 (2008), 95-105. MR 2423500
Reference: [4] Chung, F. R. K.: The average distance and the independence number.J. Graph Theory 12 (1988), 229-235. Zbl 0644.05029, MR 0940832, 10.1002/jgt.3190120213
Reference: [5] Dankelmann, P., Mukwembi, S., Swart, H. C.: Average distance and vertex-connectivity.J. Graph Theory 62 (2009), 157-177. Zbl 1221.05108, MR 2555095, 10.1002/jgt.20395
Reference: [6] Dobrynin, A. A., Entringer, R., Gutman, I.: Wiener index of trees: Theory and applications.Acta Appl. Math. 66 (2001), 211-249. Zbl 0982.05044, MR 1843259, 10.1023/A:1010767517079
Reference: [7] Du, Z., Zhou, B.: A note on Wiener indices of unicyclic graphs.Ars Comb. 93 (2009), 97-103. Zbl 1224.05139, MR 2566742
Reference: [8] Du, Z., Zhou, B.: Minimum on Wiener indices of trees and unicyclic graphs of given matching number.MATCH Commun. Math. Comput. Chem. 63 (2010), 101-112. MR 2582967
Reference: [9] Du, Z., Zhou, B.: On the reverse Wiener indices of unicyclic graphs.Acta Appl. Math. 106 (2009), 293-306. Zbl 1172.05351, MR 2497411, 10.1007/s10440-008-9298-z
Reference: [10] Entringer, R. C., Jackson, D. E., Snyder, D. A.: Distance in graphs.Czech. Math. J. 26 (1976), 283-296. Zbl 0329.05112, MR 0543771
Reference: [11] Hosoya, H.: Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons.Bull. Chem. Soc. Japan 44 (1971), 2332-2339. 10.1246/bcsj.44.2332
Reference: [12] Ivanciuc, O., Ivanciuc, T., Balaban, A. T.: Quantitative structure-property relationship evaluation of structural descriptors derived from the distance and reverse Wiener matrices.Internet Electron. J. Mol. Des. 1 (2002), 467-487.
Reference: [13] Luo, W., Zhou, B.: Further properties of reverse Wiener index.MATCH Commun. Math. Comput. Chem. 61 (2009), 653-661. Zbl 1224.05149, MR 2514237
Reference: [14] Luo, W., Zhou, B.: On ordinary and reverse Wiener indices of non-caterpillars.Math. Comput. Modelling 50 (2009), 188-193. Zbl 1185.05146, MR 2542600, 10.1016/j.mcm.2009.02.010
Reference: [15] Luo, W., Zhou, B., Trinajstić, N., Du, Z.: Reverse Wiener indices of graphs of exactly two cycles.Util. Math., in press.
Reference: [16] Nikolić, S., Trinajstić, N., Mihalić, Z.: The Wiener index: Development and applications.Croat. Chem. Acta 68 (1995), 105-128.
Reference: [17] Plesník, J.: On the sum of all distances in a graph or digraph.J. Graph Theory 8 (1984), 1-21. Zbl 0552.05048, MR 0732013, 10.1002/jgt.3190080102
Reference: [18] Rouvray, D. H.: The rich legacy of half a century of the Wiener index.D. H. Rouvray and R. B. King Topology in Chemistry-Discrete Mathematics of Molecules, Norwood, Chichester (2002), 16-37.
Reference: [19] Trinajstić, N.: Chemical Graph Theory, 2nd revised edn.CRC press, Boca Raton (1992), 241-245. MR 1169298
Reference: [20] Wiener, H.: Structural determination of paraffin boiling points.J. Am. Chem. Soc. 69 (1947), 17-20. 10.1021/ja01193a005
Reference: [21] Zhang, B., Zhou, B.: On modified and reverse Wiener indices of trees.Z. Naturforsch. 61a (2006), 536-540. MR 2189582, 10.1515/zna-2006-10-1104
Reference: [22] Zhou, B., Trinajstić, N.: Mathematical properties of molecular descriptors based on distances.Croat. Chem. Acta 83 (2010), 227-242.
Reference: [23] Zhou, B.: Reverse Wiener index.I. Gutman and B. Furtula Novel Molecular Structure Descriptors-Theory and Applications II, Univ. Kragujevac, Kragujevac (2010), 193-204. Zbl 1194.92092
.

Files

Files Size Format View
CzechMathJ_62-2012-1_16.pdf 334.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo