Previous |  Up |  Next

Article

Title: Some remarks on Nagumo's theorem (English)
Author: Mejstrik, Thomas
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 1
Year: 2012
Pages: 235-242
Summary lang: English
.
Category: math
.
Summary: We provide a simpler proof for a recent generalization of Nagumo's uniqueness theorem by A. Constantin: On Nagumo's theorem. Proc. Japan Acad., Ser. A 86 (2010), 41–44, for the differential equation $x'=f(t,x)$, $ x(0)=0$ and we show that not only is the solution unique but the Picard successive approximations converge to the unique solution. The proof is based on an approach that was developed in Z. S. Athanassov: Uniqueness and convergence of successive approximations for ordinary differential equations. Math. Jap. 35 (1990), 351–367. Some classical existence and uniqueness results for initial-value problems for ordinary differential equations are particular cases of our result. (English)
Keyword: ordinary differential equation
Keyword: uniqueness
MSC: 34A12
MSC: 34A34
MSC: 34A45
idZBL: Zbl 1249.34021
idMR: MR2899747
DOI: 10.1007/s10587-012-0008-7
.
Date available: 2012-03-05T07:27:52Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142053
.
Reference: [1] Agarwal, R. P., Heikkilä, S.: Uniqueness and well-posedness results for first order initial and boundary value problems..Acta Math. Hung. 94 (2002), 67-92. Zbl 1006.34002, MR 1905788, 10.1023/A:1015658621390
Reference: [2] Athanassov, Z. S.: Uniqueness and convergence of successive approximations for ordinary differential equations.Math. Jap. 35 (1990), 351-367. Zbl 0709.34002, MR 1049101
Reference: [3] Bellman, R.: Stability Theory of Differential Equations.New York-London: McGraw-Hill Book Company (1953), (166). MR 0061235
Reference: [4] Constantin, A.: Solutions globales d'équations différentielles perturbées.C. R. Acad. Sci., Paris, Sér. I 320 (1995), 1319-1322. Zbl 0839.34002, MR 1338279
Reference: [5] Constantin, A.: On Nagumo's theorem.Proc. Japan Acad., Ser. A 86 (2010), 41-44. Zbl 1192.34014, MR 2590189
Reference: [6] Coppel, W. A.: Stability and Asymptotic Behavior of Differential Equations.Boston: D. C. Heath and Company (1965), 166. Zbl 0154.09301, MR 0190463
Reference: [7] Lipovan, O.: A retarded Gronwall-like inequality and its applications.J. Math. Anal. Appl. 252 (2000), 389-401. Zbl 0974.26007, MR 1797863, 10.1006/jmaa.2000.7085
Reference: [8] Nagumo, M.: Eine hinreichende Bedingung für die Unität der Lösung von Differentialgleichungen erster Ordnung.Japanese Journ. of Math. 3 (1926), 107-112. 10.4099/jjm1924.3.0_107
Reference: [9] Negrea, R.: On a class of backward stochastic differential equations and applications to the stochastic resonance."Recent advances in stochastic modeling and data analysis", pp. 26-33, World Sci. Publ., Hackensack, NJ, 2007. MR 2449681
Reference: [10] Sonoc, C.: On the pathwise uniqueness of solutions of stochastic differential equations.Port. Math. 55 (1998), 451-456. Zbl 0932.60067, MR 1672118
.

Files

Files Size Format View
CzechMathJ_62-2012-1_17.pdf 229.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo