Previous |  Up |  Next

Article

Title: Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on $m$-dimensional compact intervals (English)
Author: Kaliaj, Sokol B.
Author: Tato, Agron D.
Author: Gumeni, Fatmir D.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 1
Year: 2012
Pages: 243-255
Summary lang: English
.
Category: math
.
Summary: In this paper we use a generalized version of absolute continuity defined by J. Kurzweil, J. Jarník, Equiintegrability and controlled convergence of Perron-type integrable functions, Real Anal. Exch. 17 (1992), 110–139. By applying uniformly this generalized version of absolute continuity to the primitives of the Henstock-Kurzweil-Pettis integrable functions, we obtain controlled convergence theorems for the Henstock-Kurzweil-Pettis integral. First, we present a controlled convergence theorem for Henstock-Kurzweil-Pettis integral of functions defined on $m$-dimensional compact intervals of $\mathbb {R}^{m}$ and taking values in a Banach space. Then, we extend this theorem to complete locally convex topological vector spaces. (English)
Keyword: Henstock-Kurzweil-Pettis integral
Keyword: controlled convergence theorem
Keyword: complete locally convex spaces
Keyword: $m$-dimensional compact interval
MSC: 26A39
MSC: 28B05
MSC: 46G10
idZBL: Zbl 1249.28017
idMR: MR2899748
DOI: 10.1007/s10587-012-0009-6
.
Date available: 2012-03-05T07:29:11Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142054
.
Reference: [1] Cichoń, M.: Convergence theorems for the Henstock-Kurzweil-Pettis integral.Acta Math. Hung. 92 (2001), 75-82. Zbl 1001.26003, MR 1924251, 10.1023/A:1013756111769
Reference: [2] Piazza, L. Di, Musiał, K.: Characterizations of Kurzweil-Henstock-Pettis integrable functions.Stud. Math. 176 (2006), 159-176. MR 2264361, 10.4064/sm176-2-4
Reference: [3] Piazza, L. Di: Kurzweil-Henstock type integration on Banach spaces.Real Anal. Exch. 29 (2003-2004), 543-556. MR 2083796
Reference: [4] Fremlin, D. H.: Pointwise compact sets of measurable functions.Manuscr. Math. 15 (1975), 219-242. Zbl 0303.28006, MR 0372594, 10.1007/BF01168675
Reference: [5] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.Graduate Studies in Mathematics. Vol. 4. Providence, AMS (1994), 395. Zbl 0807.26004, MR 1288751
Reference: [6] Guoju, Y., Tianqing, A.: On Henstock-Dunford and Henstock-Pettis integrals.Int. J. Math. Sci. 25 (2001), 467-478. MR 1823609, 10.1155/S0161171201002381
Reference: [7] Guoju, Y.: On the Henstock-Kurzweil-Dunford and Kurzweil-Henstock-Pettis integrals.Rocky Mt. J. Math. 39 (2009), 1233-1244. Zbl 1214.28009, MR 2524711, 10.1216/RMJ-2009-39-4-1233
Reference: [8] James, R.: Weak compactness and reflexivity.Isr. J. Math. 2 (1964), 101-119. Zbl 0127.32502, MR 0176310, 10.1007/BF02759950
Reference: [9] Kurzweil, J., Jarník, J.: Equiintegrability and controlled convergence of Perron-type integrable functions.Real Anal. Exch. 17 (1992), 110-139. Zbl 0754.26003, 10.2307/44152200
Reference: [10] Musiał, K.: Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces.Atti Semin. Mat. Fis. Univ. Modena 35 (1987), 159-165. Zbl 0636.28005, MR 0922998
Reference: [11] Musiał, K.: Topics in the theory of Pettis integration.Rend. Ist. Math. Univ. Trieste 23 (1991), 177-262. Zbl 0798.46042, MR 1248654
Reference: [12] Musiał, K.: Pettis integral.Handbook of Measure Theory Vol. I and II E. Pap Amsterdam: North-Holland (2002), 531-586. Zbl 1043.28010, MR 1954622
Reference: [13] Schaefer, H. H.: Topological Vector Spaces.Graduate Texts in Mathematics. 3. 3rd printing corrected. New York-Heidelberg-Berlin: Springer-Verlag XI (1971), 294. Zbl 0217.16002, MR 0342978
Reference: [14] Schwabik, Š., Guoju, Y.: Topics in Banach Space Integration.Series in Real Analysis 10. Hackensack, NJ: World Scientific (2005), 312. MR 2167754
.

Files

Files Size Format View
CzechMathJ_62-2012-1_18.pdf 272.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo