Previous |  Up |  Next

Article

Keywords:
integral group ring; augmentation ideal; augmentation quotient groups; finite 2-group; semidihedral group
Summary:
Let $G$ be a finite nonabelian group, ${\mathbb Z}G$ its associated integral group ring, and $\triangle (G)$ its augmentation ideal. For the semidihedral group and another nonabelian 2-group the problem of their augmentation ideals and quotient groups $Q_{n}(G)=\triangle ^{n}(G)/\triangle ^{n+1}(G)$ is deal with. An explicit basis for the augmentation ideal is obtained, so that the structure of its quotient groups can be determined.
References:
[1] Bachman, F., Grünenfelder, L.: The periodicity in the graded ring associated with an integral group ring. J. Pure Appl. Algebra 5 (1974), 253-264. DOI 10.1016/0022-4049(74)90036-X | MR 0357564
[2] Bak, A., Tang, G. P.: Solution to the presentation problem for powers of the augmentation ideal of torsion free and torsion abelian groups. Adv. Math. 189 (2004), 1-37. DOI 10.1016/j.aim.2003.11.002 | MR 2093478 | Zbl 1068.16032
[3] Gorenstein, D.: Finite Groups, 2nd ed. New York: Chelsea Publishing Company (1980). MR 0569209 | Zbl 0463.20012
[4] Hales, A. W., Passi, I. B. S.: The augmentation quotients of finite Abelian $p$-groups. Contemp. Math. 93 (1989), 167-171. DOI 10.1090/conm/093/1003351 | MR 1003351 | Zbl 0677.20006
[5] Parmenter, M. M.: A basis for powers of the augmentation ideal. Algebra Colloq. 8 (2001), 121-128. MR 1838512 | Zbl 0979.16015
[6] Passi, I. B. S.: Group Rings and Their Augmentation Ideals. Lecture Notes in Mathematics. 715, Springer-Verlag, Berlin (1979). MR 0537126 | Zbl 0405.20007
[7] Tang, G. P.: On a problem of Karpilovsky. Algebra Colloq. 10 (2003), 11-16. DOI 10.1007/s100110300002 | MR 1961501 | Zbl 1034.20006
[8] Zhao, H., Tang, G.: Structure of powers of augmentation ideals and their quotient groups for integral group rings of dihedral groups. Chinese J. Shaanxi Norm. Univ., Nat. Sci. Ed. 33 (2005), 18-21. MR 2146744 | Zbl 1084.20003
[9] Zhou, Q., You, H.: Augmentation quotients of the dihedral group. Chinese Chin. Ann. Math., Ser. A 31 (2010), 531-540. MR 2760767 | Zbl 1224.20001
[10] Zhou, Q., You, H.: On the structure of augmentation quotient groups for generalized quaternion group. Algebra Colloq (to appear).
Partner of
EuDML logo