Title:
|
An identity with generalized derivations on Lie ideals, right ideals and Banach algebras (English) |
Author:
|
de Filippis, Vincenzo |
Author:
|
Scudo, Giovanni |
Author:
|
Tammam El-Sayiad, Mohammad S. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
62 |
Issue:
|
2 |
Year:
|
2012 |
Pages:
|
453-468 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $R$ be a prime ring of characteristic different from $2$, $U$ the Utumi quotient ring of $R$, $C=Z(U)$ the extended centroid of $R$, $L$ a non-central Lie ideal of $R$, $F$ a non-zero generalized derivation of $R$. Suppose that $[F(u),u]F(u)=0$ for all $u\in L$, then one of the following holds: (1) there exists $\alpha \in C$ such that $F(x)=\alpha x$ for all $x\in R$; (2) $R$ satisfies the standard identity $s_4$ and there exist $a\in U$ and $\alpha \in C$ such that $F(x)=ax+xa+\alpha x$ for all $x\in R$. We also extend the result to the one-sided case. Finally, as an application we obtain some range inclusion results of continuous or spectrally bounded generalized derivations on Banach algebras. (English) |
Keyword:
|
prime rings |
Keyword:
|
differential identities |
Keyword:
|
generalized derivations |
Keyword:
|
Banach algebra |
MSC:
|
16N60 |
MSC:
|
16W25 |
MSC:
|
47B47 |
MSC:
|
47B48 |
idZBL:
|
Zbl 1249.16045 |
idMR:
|
MR2990186 |
DOI:
|
10.1007/s10587-012-0039-0 |
. |
Date available:
|
2012-06-08T09:45:01Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/142838 |
. |
Reference:
|
[1] Beidar, K. I.: Rings with generalized identities. III.Mosc. Univ. Math. Bull. 33 (1978), 53-58. Zbl 0407.16002, MR 0510966 |
Reference:
|
[2] Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V.: Rings with Generalized Identities.Pure and Applied Mathematics, Marcel Dekker. 196. New York (1996). MR 1368853 |
Reference:
|
[3] Brešar, M., Mathieu, M.: Derivations mapping into the radical III.J. Funct. Anal. 133 (1995), 21-29. Zbl 0897.46045, MR 1351640, 10.1006/jfan.1995.1116 |
Reference:
|
[4] Chuang, C. L.: GPIs having coefficients in Utumi quotient rings.Proc. Am. Math. Soc. 103 (1988), 723-728. Zbl 0656.16006, MR 0947646, 10.1090/S0002-9939-1988-0947646-4 |
Reference:
|
[5] Filippis, V. De: On the annihilator of commutators with derivation in prime rings.Rend. Circ. Mat. Palermo, II. Ser. 49 (2000), 343-352. Zbl 0962.16017, MR 1765404 |
Reference:
|
[6] Filippis, V. De: A result on vanishing derivations for commutators on right ideals.Math. Pannonica 16 (2005), 3-18. Zbl 1081.16036, MR 2134234 |
Reference:
|
[7] Filippis, V. De: A product of generalized derivations on polynomials in prime rings.Collect. Math. 61 (2010), 303-322. MR 2732374, 10.1007/BF03191235 |
Reference:
|
[8] Vincenzo, O. M. Di: On the n-th centralizer of a Lie ideal.Boll. Unione Mat. Ital., VII. Ser., A 3 (1989), 77-85. Zbl 0692.16022, MR 0990089 |
Reference:
|
[9] Erickson, T. S., III, W. S. Martindale, Osborn, J. M.: Prime nonassociative algebras.Pac. J. Math. 60 (1975), 49-63. MR 0382379, 10.2140/pjm.1975.60.49 |
Reference:
|
[10] Faith, C., Utumi, Y.: On a new proof of Litoff's theorem.Acta Math. Acad. Sci. Hung. 14 (1963), 369-371. Zbl 0147.28602, MR 0155858, 10.1007/BF01895723 |
Reference:
|
[11] Herstein, I. N.: Topics in Ring Theory.Chicago Lectures in Mathematics. Chicago-London: The University of Chicago Press. XI (1969). Zbl 0232.16001, MR 0271135 |
Reference:
|
[12] Jacobson, N.: PI-Algebras. An Introduction.Lecture Notes in Mathematics. 441. Springer-Verlag, New York (1975). Zbl 0326.16013, MR 0369421 |
Reference:
|
[13] Jacobson, N.: Structure of Rings.Amererican Mathematical Society. Providence R.I. (1956). Zbl 0073.02002, MR 0081264 |
Reference:
|
[14] Johnson, B. E., Sinclair, A. M.: Continuity of derivations and a problem of Kaplansky.Am. J. Math. 90 (1968), 1067-1073. Zbl 0179.18103, MR 0239419, 10.2307/2373290 |
Reference:
|
[15] Kharchenko, V. K.: Differential identities of prime rings.Algebra Logic 17 (1979), 155-168. MR 0541758, 10.1007/BF01670115 |
Reference:
|
[16] Kim, B.: On the derivations of semiprime rings and noncommutative Banach algebras.Acta Math. Sin., Engl. Ser. 16 (2000), 21-28. Zbl 0973.16020, MR 1760520, 10.1007/s101149900020 |
Reference:
|
[17] Kim, B.: Derivations of semiprime rings and noncommutative Banach algebras.Commun. Korean Math. Soc. 17 (2002), 607-618. Zbl 1101.46317, MR 1971004, 10.4134/CKMS.2002.17.4.607 |
Reference:
|
[18] Lanski, C.: Differential identities, Lie ideals, and Posner's theorems.Pac. J. Math. 134 (1988), 275-297. Zbl 0614.16028, MR 0961236, 10.2140/pjm.1988.134.275 |
Reference:
|
[19] Lee, T.-K.: Generalized derivations of left faithful rings.Commun. Algebra 27 (1999), 4057-4073. Zbl 0946.16026, MR 1700189, 10.1080/00927879908826682 |
Reference:
|
[20] Lee, T.-K.: Semiprime rings with differential identities.Bull. Inst. Math., Acad. Sin. 20 (1992), 27-38. Zbl 0769.16017, MR 1166215 |
Reference:
|
[21] III, W. S. Martindale: Prime rings satisfying a generalized polynomial identity.J. Algebra 12 (1969), 576-584. MR 0238897, 10.1016/0021-8693(69)90029-5 |
Reference:
|
[22] Mathieu, M., Murphy, G. J.: Derivations mapping into the radical.Arch. Math. 57 (1991), 469-474. Zbl 0714.46038, MR 1129522, 10.1007/BF01246745 |
Reference:
|
[23] Mathieu, M., Runde, V.: Derivations mapping into the radical II.Bull. Lond. Math. Soc. 24 (1992), 485-487. Zbl 0733.46023, MR 1173946, 10.1112/blms/24.5.485 |
Reference:
|
[24] Park, K.-H.: On derivations in noncommutative semiprime rings and Banach algebras.Bull. Korean Math. Soc. 42 (2005), 671-678. Zbl 1105.16031, MR 2181155, 10.4134/BKMS.2005.42.4.671 |
Reference:
|
[25] Posner, E. C.: Derivations in prime rings.Proc. Am. Math. Soc. 8 (1958), 1093-1100. Zbl 0082.03003, MR 0095863, 10.1090/S0002-9939-1957-0095863-0 |
Reference:
|
[26] Sinclair, A. M.: Continuous derivations on Banach algebras.Proc. Am. Math. Soc. 20 (1969), 166-170. Zbl 0164.44603, MR 0233207, 10.1090/S0002-9939-1969-0233207-X |
Reference:
|
[27] Singer, I. M., Wermer, J.: Derivations on commutative normed algebras.Math. Ann. 129 (1955), 260-264. Zbl 0067.35101, MR 0070061, 10.1007/BF01362370 |
Reference:
|
[28] Thomas, M. P.: The image of a derivation is contained in the radical.Ann. Math. (2) 128/3 (1988), 435-460. Zbl 0681.47016, MR 0970607 |
Reference:
|
[29] Wong, T. L.: Derivations with power-central values on multilinear polynomials.Algebra Colloq. 3 (1996), 369-378. Zbl 0864.16031, MR 1422975 |
. |