Previous |  Up |  Next

Article

Title: Nonmonotone nonconvolution functions of positive type and applications (English)
Author: Bárta, Tomáš
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 2
Year: 2012
Pages: 211-220
Summary lang: English
.
Category: math
.
Summary: We present two sufficient conditions for nonconvolution kernels to be of positive type. We apply the results to obtain stability for one-dimensional models of chemically reacting viscoelastic materials. (English)
Keyword: functions of positive type
Keyword: nonconvolution integral equation
Keyword: chemically reacting viscoelastic fluid
MSC: 42A82
MSC: 45A05
MSC: 45M05
MSC: 76A10
idZBL: Zbl 1265.42019
idMR: MR3017255
.
Date available: 2012-08-08T08:58:41Z
Last updated: 2014-07-07
Stable URL: http://hdl.handle.net/10338.dmlcz/142885
.
Reference: [1] Bárta T.: Global existence for a nonlinear model of 1D chemically reacting viscoelastic body.preprint, 2012.
Reference: [2] Bulíček M., Málek J., Rajagopal K.R.: Mathematical results concerning unsteady flows of chemically reacting incompressible fluids.(English summary) Partial differential equations and fluid mechanics, 2653, London Math. Soc. Lecture Note Ser., 364, Cambridge Univ. Press, Cambridge, 2009. Zbl 1182.35184, MR 2605756
Reference: [3] Cannarsa P., Sforza D.: Integro-differential equations of hyperbolic type with positive definite kernels.J. Differential Equations 250 (2011), no. 12, 4289–4335. Zbl 1218.45010, MR 2793256, 10.1016/j.jde.2011.03.005
Reference: [4] Gripenberg G., Londen S.O., Staffans O.: Volterra integral and functional equations.Encyclopedia of Mathematics and its Applications, 34, Cambridge University Press, Cambridge, 1990. Zbl 1159.45001, MR 1050319
Reference: [5] Halanay A.: On the asymptotic behavior of the solutions of an integro-differential equation.J. Math. Anal. Appl 10 (1965), 319–324. Zbl 0136.10202, MR 0176304, 10.1016/0022-247X(65)90126-5
Reference: [6] Kiffe T.: On nonlinear Volterra equations of nonconvolution type.J. Differential Equations 22 (1976), no. 2, 349–367. Zbl 0298.45003, MR 0417721, 10.1016/0022-0396(76)90033-4
Reference: [7] Mustapha K., McLean W.: Discontinuous Galerkin method for an evolution equation with a memory term of positive type.Math. Comp. 78 (2009), no. 268, 1975–1995. Zbl 1198.65195, MR 2521275, 10.1090/S0025-5718-09-02234-0
Reference: [8] Prüss J.: Evolutionary Integral Equations and Applications.Monographs in Mathematics, 87, Birkhäuser, Basel, 1993. MR 1238939
Reference: [9] Rajagopal K.R., Wineman A.S.: A note on viscoelastic materials that can age.International Journal of Non-Linear Mechanics 39 (2004), 1547–1554. 10.1016/j.ijnonlinmec.2003.09.001
Reference: [10] Rajagopal K.R., Wineman A.S.: Applications of viscoelastic clock models in biomechanics.Acta Mechanica 213 (2010), no. 3–4, 255–266. 10.1007/s00707-009-0262-4
Reference: [11] Renardy M., Hrusa W.J., Nohel J.A.: Mathematical problems in viscoelasticity.Pitman Monographs and Surveys in Pure and Applied Mathematics, 35, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987. Zbl 0719.73013, MR 0919738
Reference: [12] Tatar N.-E.: Long time behavior for a viscoelastic problem with a positive definite kernel.Aust. J. Math. Anal. Appl. 1 (2004), no. 1, Art. 5, 11 pp. Zbl 1129.74314, MR 2077662
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-2_4.pdf 449.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo