Title:
|
On the exterior problem in 2D for stationary flows of fluids with shear dependent viscosity (English) |
Author:
|
Bildhauer, M. |
Author:
|
Fuchs, M. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
53 |
Issue:
|
2 |
Year:
|
2012 |
Pages:
|
221-236 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
On the complement of the unit disk $B$ we consider solutions of the equations describing the stationary flow of an incompressible fluid with shear dependent viscosity. We show that the velocity field $u$ is equal to zero provided $u|_{\partial B} = 0$ and $\lim_{|x| \to \infty} |x|^{1/3} |u (x)| = 0$ uniformly. For slow flows the latter condition can be replaced by $\lim_{|x| \to \infty} |u (x)| = 0$ uniformly. In particular, these results hold for the classical Navier-Stokes case. (English) |
Keyword:
|
equations of Navier-Stokes type |
Keyword:
|
stationary case |
Keyword:
|
exterior problem in 2D |
MSC:
|
35Q30 |
MSC:
|
76D05 |
idZBL:
|
Zbl 1265.35257 |
idMR:
|
MR3017256 |
. |
Date available:
|
2012-08-08T08:59:48Z |
Last updated:
|
2014-07-07 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/142886 |
. |
Reference:
|
[BF] Bildhauer M., Fuchs M.: Variational integrals of splitting type: higher integrability under general growth conditions.Ann. Mat. Pura Appl. 188 (2009), 467–496. Zbl 1181.49035, MR 2512159, 10.1007/s10231-008-0085-2 |
Reference:
|
[Fu] Fuchs M.: Liouville theorems for stationary flows of shear thickening fluids in the plane.J. Math. Fluid Mech. DOI 10.1007/s00021-011-0070-1. |
Reference:
|
[FuSe] Fuchs M., Seregin G.A.: Variational methods for problems from plasticity theory and for generalized Newtonian fluids.Lecture Notes in Mathematics, 1749, Springer, Berlin-Heidelberg-New York, 2000. Zbl 0964.76003, MR 1810507, 10.1007/BFb0103751 |
Reference:
|
[FuZha] Fuchs M., Zhang G.: Liouville theorems for entire local minimizers of energies defined on the class $L \log L$ and for entire solutions of the stationary Prandtl-Eyring fluid model.Calc. Var. 44 (2012), no. 1–2, 271–295. MR 2898779, 10.1007/s00526-011-0434-7 |
Reference:
|
[Ga1] Galdi G.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations Vol. I.Springer Tracts in Natural Philosophy, 38, Springer, Berlin-Heidelberg-New York, 1994. MR 1284205 |
Reference:
|
[Ga2] Galdi G.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations Vol. II.Springer Tracts in Natural Philosophy, 39, Springer, Berlin-Heidelberg-New York, 1994. Zbl 0949.35005, MR 1284206 |
Reference:
|
[Ga3] Galdi G.: On the existence of symmetric steady-state solutions to the plane exterior Navier-Stokes problem for arbitrary large Reynolds number.Advances in Fluid Dynamics, Quad. Mat., 4, Aracne, Rome, (1999), 1–25. Zbl 0948.35097, MR 1770187 |
Reference:
|
[GM] Giaquinta M., Modica G.: Nonlinear systems of the type of stationary Navier-Stokes system.J. Reine Angew. Math. 330 (1982), 173–214. MR 0641818 |
Reference:
|
[La] Ladyzhenskaya O.A.: The Mathematical Theory of Viscous Incompressible Flow.Gordon and Breach, 1969. Zbl 0184.52603, MR 0254401 |
Reference:
|
[MNRR] Málek J., Nečas J., Rokyta M., Růžička M.: Weak and Measure Valued Solutions to Evolutionary PDEs.Chapman & Hall, London, 1996. Zbl 0851.35002, MR 1409366 |
. |