Article
Keywords:
integral operator; Hardy space
Summary:
Let $A_{1},\dots ,A_{m}$ be $n\times n$ real matrices such that for each $1\leq i\leq m,$ $A_{i}$ is invertible and $A_{i}-A_{j}$ is invertible for $i\neq j$. In this paper we study integral operators of the form $$ Tf( x) =\int k_{1}( x-A_{1}y) k_{2}( x-A_{2}y) \dots k_{m}( x-A_{m}y) f( y)  {\rm d} y, $$ $k_{i}( y) =\sum _{j\in \mathbb Z}2^{jn/{q_{i}}}\varphi _{i,j}( 2^{j}y) $, $1\leq q_{i}<\infty ,$ $1/{q_{1}}+1/{q_{2}}+\dots +1/{q_{m}}=1-r,$ $0\leq r<1,$ and $\varphi _{i,j}$ satisfying suitable regularity conditions. We obtain the boundedness of $T\colon  H^{p}( \mathbb {R} ^{n}) \rightarrow L^{q}( \mathbb {R}^{n}) $ for $ 0<p<1/{r}$ and $1/{q}=1/{p}-r.$ We also show that we can not expect the $H^{p}$-$H^{q}$ boundedness of this kind of operators.
References:
                        
[2] Gelfand, I. M., Shilov, G. E.: 
Generalized Functions, Properties and Operations. Vol. 1, Academic Press Inc. (1964). 
MR 0166596[6] Stein, E. M.: 
Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton N. J. (1970). 
MR 0290095 | 
Zbl 0207.13501[7] Stein, E. M.: 
Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton N. J. (1993). 
MR 1232192 | 
Zbl 0821.42001[8] Stein, E. M., Weiss, G.: 
On the theory of harmonic functions of several variables I: The theory of $H^{p}$ spaces. Acta Math. 103 (1960), 25-62. 
DOI 10.1007/BF02546524 | 
MR 0121579[9] Taibleson, M. H., Weiss, G.: 
The molecular characterization of certain Hardy spaces. Astérisque 77 (1980), 67-151. 
MR 0604370 | 
Zbl 0472.46041