Previous |  Up |  Next

Article

Title: On the $H^{p}$-$L^{q}$ boundedness of some fractional integral operators (English)
Author: Rocha, Pablo
Author: Urciuolo, M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 3
Year: 2012
Pages: 625-635
Summary lang: English
.
Category: math
.
Summary: Let $A_{1},\dots ,A_{m}$ be $n\times n$ real matrices such that for each $1\leq i\leq m,$ $A_{i}$ is invertible and $A_{i}-A_{j}$ is invertible for $i\neq j$. In this paper we study integral operators of the form $$ Tf( x) =\int k_{1}( x-A_{1}y) k_{2}( x-A_{2}y) \dots k_{m}( x-A_{m}y) f( y) {\rm d} y, $$ $k_{i}( y) =\sum _{j\in \mathbb Z}2^{jn/{q_{i}}}\varphi _{i,j}( 2^{j}y) $, $1\leq q_{i}<\infty ,$ $1/{q_{1}}+1/{q_{2}}+\dots +1/{q_{m}}=1-r,$ $0\leq r<1,$ and $\varphi _{i,j}$ satisfying suitable regularity conditions. We obtain the boundedness of $T\colon H^{p}( \mathbb {R} ^{n}) \rightarrow L^{q}( \mathbb {R}^{n}) $ for $ 0<p<1/{r}$ and $1/{q}=1/{p}-r.$ We also show that we can not expect the $H^{p}$-$H^{q}$ boundedness of this kind of operators. (English)
Keyword: integral operator
Keyword: Hardy space
MSC: 42B20
MSC: 42B30
idZBL: Zbl 1265.42046
idMR: MR2984623
DOI: 10.1007/s10587-012-0054-1
.
Date available: 2012-11-10T21:00:49Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143014
.
Reference: [1] Ding, Y., Lu, S.: Boundedness of homogeneous fractional integrals on $L^{p}$ for $N/\alpha \leq p\leq \infty$.Nagoya Math. J. 167 (2002), 17-33. Zbl 1031.42015, MR 1924717, 10.1017/S0027763000025411
Reference: [2] Gelfand, I. M., Shilov, G. E.: Generalized Functions, Properties and Operations.Vol. 1, Academic Press Inc. (1964). MR 0166596
Reference: [3] Godoy, T., Urciuolo, M.: On certain integral operators of fractional type.Acta Math. Hung. 82 (1999), 99-105. Zbl 0937.47032, MR 1658586, 10.1023/A:1026437621978
Reference: [4] Ricci, F., Sjogren, P.: Two-parameter maximal functions in the Heisenberg group.Math. Z. 199 (1988), 565-575. MR 0968322, 10.1007/BF01161645
Reference: [5] Rocha, P., Urciuolo, M.: On the $H^{p}$-$L^{p}$ boundedness of some integral operators.Georgian Math. J. 18 (2011), 801-808. Zbl 1230.42030, MR 2897664, 10.1515/GMJ.2011.0043
Reference: [6] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions.Princeton University Press, Princeton N. J. (1970). Zbl 0207.13501, MR 0290095
Reference: [7] Stein, E. M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals.Princeton University Press, Princeton N. J. (1993). Zbl 0821.42001, MR 1232192
Reference: [8] Stein, E. M., Weiss, G.: On the theory of harmonic functions of several variables I: The theory of $H^{p}$ spaces.Acta Math. 103 (1960), 25-62. MR 0121579, 10.1007/BF02546524
Reference: [9] Taibleson, M. H., Weiss, G.: The molecular characterization of certain Hardy spaces.Astérisque 77 (1980), 67-151. Zbl 0472.46041, MR 0604370
.

Files

Files Size Format View
CzechMathJ_62-2012-3_4.pdf 276.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo