Previous |  Up |  Next

Article

Title: $k$-torsionless modules with finite Gorenstein dimension (English)
Author: Salimi, Maryam
Author: Tavasoli, Elham
Author: Yassemi, Siamak
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 3
Year: 2012
Pages: 663-672
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative Noetherian ring. It is shown that the finitely generated $R$-module $M$ with finite Gorenstein dimension is reflexive if and only if $M_{\mathfrak p}$ is reflexive for ${\mathfrak p} \in {\rm Spec}(R) $ with ${\rm depth}(R_{\mathfrak p}) \leq 1$, and ${\mbox {G-{\rm dim}}}_{R_{\mathfrak p}} (M_{\mathfrak p}) \leq {\rm depth}(R_{\mathfrak p})-2 $ for ${\mathfrak p}\in {\rm Spec} (R) $ with ${\rm depth}(R_{\mathfrak p})\geq 2 $. This gives a generalization of Serre and Samuel's results on reflexive modules over a regular local ring and a generalization of a recent result due to Belshoff. In addition, for $n\geq 2$ we give a characterization of $n$-Gorenstein rings via Gorenstein dimension of the dual of modules. Finally it is shown that every $R$-module has a $k$-torsionless cover provided $R$ is a $k$-Gorenstein ring. (English)
Keyword: torsionless module
Keyword: reflexive module
Keyword: Gorenstein dimension
MSC: 13C13
MSC: 13C15
MSC: 13D05
idZBL: Zbl 1265.13013
idMR: MR2984627
DOI: 10.1007/s10587-012-0058-x
.
Date available: 2012-11-10T21:05:45Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143018
.
Reference: [1] Auslander, M., Bridger, M.: Stable module theory.Mem. Am. Math. Soc. 94 (1969). Zbl 0204.36402, MR 0269685
Reference: [2] Avramov, L. L., Iyengar, S. B., Lipman, J.: Reflexivity and rigidity for complexes, I: Commutative rings.Algebra Number Theory 4 (2010), 47-86. Zbl 1194.13017, MR 2592013, 10.2140/ant.2010.4.47
Reference: [3] Belshoff, R.: Remarks on reflexive modules, covers, and envelopes.Beitr. Algebra Geom. 50 (2009), 353-362. Zbl 1186.13004, MR 2572005
Reference: [4] Bruns, W., Herzog, J.: Cohen-Macaulay Rings.Cambridge University Press, Cambridge (1993). Zbl 0788.13005, MR 1251956
Reference: [5] Christensen, L. W., Holm, H.: Ascent properties of Auslander categories.Can. J. Math. 61 (2009), 76-108. Zbl 1173.13016, MR 2488450, 10.4153/CJM-2009-004-x
Reference: [6] Christensen, L. W., Foxby, H. B., Holm, H.: Beyond Totally Reflexive Modules and Back: A Survey on Gorenstein Dimensions.Marco Fontana, Commutative algebra. Noetherian and non-Noetherian perspectives New York, 2011 101-143. Zbl 1225.13019, MR 2762509
Reference: [7] Enochs, E., Jenda, O. M. G.: Relative Homological Algebra.De Gruyter Expositions in Mathematics. 30. Berlin: Walter de Gruyter. xi (2000). Zbl 0952.13001, MR 1753146
Reference: [8] Huneke, C., Wiegand, R.: Tensor products of modules and the rigidity of Tor.Math. Ann. 299 (1994), 449-476. Zbl 0803.13008, MR 1282227, 10.1007/BF01459794
Reference: [9] Huneke, C., Wiegand, R.: Correction to ``Tensor products of modules and the rigidity of Tor''. [Math. Ann. 299, 449-476 (1994)].Math. Ann. 338 (2007), 291-293. MR 1282227, 10.1007/BF01459794
Reference: [10] Maşek, V.: Gorenstein dimension and torsion of modules over commutative Noetherian rings.Commun. Algebra 28 (2000), 5783-5811. Zbl 1002.13005, MR 1808604, 10.1080/00927870008827189
Reference: [11] Samuel, P.: Anneaux gradués factoriels et modules réflexifs.French Bull. Soc. Math. Fr. 92 (1964), 237-249. Zbl 0123.03304, MR 0186702, 10.24033/bsmf.1608
Reference: [12] Serre, J.-P.: Classes des corps cyclotomiques.Semin. Bourbaki 11 (1958/59), 11.
Reference: [13] Vasconcelos, W.: Reflexive modules over Gorenstein rings.Proc. Am. Math. Soc. 19 (1968), 1349-1355. Zbl 0167.31201, MR 0237480, 10.1090/S0002-9939-1968-0237480-2
.

Files

Files Size Format View
CzechMathJ_62-2012-3_8.pdf 255.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo