Title:
|
$k$-torsionless modules with finite Gorenstein dimension (English) |
Author:
|
Salimi, Maryam |
Author:
|
Tavasoli, Elham |
Author:
|
Yassemi, Siamak |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
62 |
Issue:
|
3 |
Year:
|
2012 |
Pages:
|
663-672 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $R$ be a commutative Noetherian ring. It is shown that the finitely generated $R$-module $M$ with finite Gorenstein dimension is reflexive if and only if $M_{\mathfrak p}$ is reflexive for ${\mathfrak p} \in {\rm Spec}(R) $ with ${\rm depth}(R_{\mathfrak p}) \leq 1$, and ${\mbox {G-{\rm dim}}}_{R_{\mathfrak p}} (M_{\mathfrak p}) \leq {\rm depth}(R_{\mathfrak p})-2 $ for ${\mathfrak p}\in {\rm Spec} (R) $ with ${\rm depth}(R_{\mathfrak p})\geq 2 $. This gives a generalization of Serre and Samuel's results on reflexive modules over a regular local ring and a generalization of a recent result due to Belshoff. In addition, for $n\geq 2$ we give a characterization of $n$-Gorenstein rings via Gorenstein dimension of the dual of modules. Finally it is shown that every $R$-module has a $k$-torsionless cover provided $R$ is a $k$-Gorenstein ring. (English) |
Keyword:
|
torsionless module |
Keyword:
|
reflexive module |
Keyword:
|
Gorenstein dimension |
MSC:
|
13C13 |
MSC:
|
13C15 |
MSC:
|
13D05 |
idZBL:
|
Zbl 1265.13013 |
idMR:
|
MR2984627 |
DOI:
|
10.1007/s10587-012-0058-x |
. |
Date available:
|
2012-11-10T21:05:45Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143018 |
. |
Reference:
|
[1] Auslander, M., Bridger, M.: Stable module theory.Mem. Am. Math. Soc. 94 (1969). Zbl 0204.36402, MR 0269685 |
Reference:
|
[2] Avramov, L. L., Iyengar, S. B., Lipman, J.: Reflexivity and rigidity for complexes, I: Commutative rings.Algebra Number Theory 4 (2010), 47-86. Zbl 1194.13017, MR 2592013, 10.2140/ant.2010.4.47 |
Reference:
|
[3] Belshoff, R.: Remarks on reflexive modules, covers, and envelopes.Beitr. Algebra Geom. 50 (2009), 353-362. Zbl 1186.13004, MR 2572005 |
Reference:
|
[4] Bruns, W., Herzog, J.: Cohen-Macaulay Rings.Cambridge University Press, Cambridge (1993). Zbl 0788.13005, MR 1251956 |
Reference:
|
[5] Christensen, L. W., Holm, H.: Ascent properties of Auslander categories.Can. J. Math. 61 (2009), 76-108. Zbl 1173.13016, MR 2488450, 10.4153/CJM-2009-004-x |
Reference:
|
[6] Christensen, L. W., Foxby, H. B., Holm, H.: Beyond Totally Reflexive Modules and Back: A Survey on Gorenstein Dimensions.Marco Fontana, Commutative algebra. Noetherian and non-Noetherian perspectives New York, 2011 101-143. Zbl 1225.13019, MR 2762509 |
Reference:
|
[7] Enochs, E., Jenda, O. M. G.: Relative Homological Algebra.De Gruyter Expositions in Mathematics. 30. Berlin: Walter de Gruyter. xi (2000). Zbl 0952.13001, MR 1753146 |
Reference:
|
[8] Huneke, C., Wiegand, R.: Tensor products of modules and the rigidity of Tor.Math. Ann. 299 (1994), 449-476. Zbl 0803.13008, MR 1282227, 10.1007/BF01459794 |
Reference:
|
[9] Huneke, C., Wiegand, R.: Correction to ``Tensor products of modules and the rigidity of Tor''. [Math. Ann. 299, 449-476 (1994)].Math. Ann. 338 (2007), 291-293. MR 1282227, 10.1007/BF01459794 |
Reference:
|
[10] Maşek, V.: Gorenstein dimension and torsion of modules over commutative Noetherian rings.Commun. Algebra 28 (2000), 5783-5811. Zbl 1002.13005, MR 1808604, 10.1080/00927870008827189 |
Reference:
|
[11] Samuel, P.: Anneaux gradués factoriels et modules réflexifs.French Bull. Soc. Math. Fr. 92 (1964), 237-249. Zbl 0123.03304, MR 0186702, 10.24033/bsmf.1608 |
Reference:
|
[12] Serre, J.-P.: Classes des corps cyclotomiques.Semin. Bourbaki 11 (1958/59), 11. |
Reference:
|
[13] Vasconcelos, W.: Reflexive modules over Gorenstein rings.Proc. Am. Math. Soc. 19 (1968), 1349-1355. Zbl 0167.31201, MR 0237480, 10.1090/S0002-9939-1968-0237480-2 |
. |