Previous |  Up |  Next

Article

Title: Differences of weighted composition operators from Hardy space to weighted-type spaces on the unit ball (English)
Author: Zhou, Ze-Hua
Author: Liang, Yu-Xia
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 3
Year: 2012
Pages: 695-708
Summary lang: English
.
Category: math
.
Summary: In this paper, we limit our analysis to the difference of the weighted composition operators acting from the Hardy space to weighted-type space in the unit ball of $\mathbb {C}^N$, and give some necessary and sufficient conditions for their boundedness or compactness. The results generalize the corresponding results on the single weighted composition operators and on the differences of composition operators, for example, M. Lindström and E. Wolf: Essential norm of the difference of weighted composition operators. Monatsh. Math. 153 (2008), 133--143. (English)
Keyword: weighted composition operator
Keyword: Hardy space
Keyword: weighted Bergman space
Keyword: essential norm
Keyword: compact
Keyword: difference
MSC: 32A37
MSC: 32H02
MSC: 47B33
MSC: 47B38
MSC: 47G10
idZBL: Zbl 1258.47051
idMR: MR2984629
DOI: 10.1007/s10587-012-0040-7
.
Date available: 2012-11-10T21:10:10Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143020
.
Reference: [1] Allen, R. F., Colonna, F.: Weighted composition operators from $H^{\infty}$ to the Bloch space of a bounded homogeneous domain.Integral Equations Oper. Theory 66 (2010), 21-40. MR 2591634, 10.1007/s00020-009-1736-4
Reference: [2] Bonet, J., Domański, P., Lindström, M.: Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions.Can. Math. Bull. 42 (1999), 139-148. Zbl 0939.47020, MR 1692002, 10.4153/CMB-1999-016-x
Reference: [3] Bonet, J., Domański, P., Lindström, M., Taskinen, J.: Composition operators between weighted Banach spaces of analytic functions.J. Aust. Math. Soc., Ser. A 64 (1998), 101-118. Zbl 0912.47014, MR 1490150, 10.1017/S1446788700001336
Reference: [4] Bonet, J., Lindström, M., Wolf, E.: Differences of composition operators between weighted Banach spaces of holomorphic functions.J. Aust. Math. Soc. 84 (2008), 9-20. MR 2469264, 10.1017/S144678870800013X
Reference: [5] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions.Studies in Advanced Mathematics Boca Raton, FL, CRC Press (1995). Zbl 0873.47017, MR 1397026
Reference: [6] Dai, J. N., Ouyang, C. H.: Differences of weighted composition operators on $H_{\alpha}^\infty(B_N)$.J. Inequal. Appl. Article ID 127431 (2009), 19 pp. MR 2579553
Reference: [7] Fang, Z. S., Zhou, Z. H.: Differences of composition operators on the space of bounded analytic functions in the polydisc.Abstr. Appl. Anal. Article ID 983132 (2008), 10 pp. Zbl 1160.32009, MR 2466222
Reference: [8] Fang, Z. S., Zhou, Z. H.: Differences of composition operators on the Bloch space in the polydisc.Bull. Aust. Math. Soc. 79 (2009), 465-471. Zbl 1166.47032, MR 2505351, 10.1017/S0004972709000045
Reference: [9] Gorkin, P., Mortini, R., Suarez, D.: Homotopic composition operators on $H^\infty(B^n)$.Jarosz, Krzysztof (ed.), Function spaces. Proceedings of the 4th conference, Edwardsville, IL, USA (2002), Providence, RI: American Mathematical Society (AMS), Contemp. Math 328 177-188 (2003). MR 1990399
Reference: [10] Hosokawa, T., Izuchi, K., Ohno, S.: Topological structure of the space of weighted composition operators on $H^\infty$.Integral Equations Oper. Theory 53 (2005), 509-526. MR 2187435
Reference: [11] Hosokawa, T., Ohno, S.: Topological structures of the sets of composition operators on the Bloch spaces,.J. Math. Anal. Appl. 314 (2006), 736-748. Zbl 1087.47029, MR 2185263, 10.1016/j.jmaa.2005.04.080
Reference: [12] Hosokawa, T., Ohno, S.: Differences of composition operators on the Bloch spaces.J. Oper. Theory 57 (2007), 229-242. Zbl 1174.47019, MR 2328996
Reference: [13] Lindström, M., Wolf, E.: Essential norm of the difference of weighted composition operators.Monatsh. Math. 153 (2008), 133-143. MR 2373366, 10.1007/s00605-007-0493-1
Reference: [14] MacCluer, B. D.: Compact composition operators on $H^p(B_N)$.Mich. Math. J. 32 (1985), 237-248. Zbl 0585.47022, MR 0783578, 10.1307/mmj/1029003191
Reference: [15] MacCluer, B. D., Ohno, S., Zhao, R.: Topological structure of the space of composition operators on $H^\infty$.Integral Equations Oper. Theory 40 (2001), 481-494. MR 1839472
Reference: [16] Moorhouse, J.: Compact differences of composition operators.J. Funct. Anal. 219 (2005), 70-92. Zbl 1087.47032, MR 2108359, 10.1016/j.jfa.2004.01.012
Reference: [17] Ohno, S., Stroethoff, K., Zhao, R.: Weighted composition operators between Bloch-type spaces.Rocky Mt. J. Math. 33 (2003), 191-215. Zbl 1042.47018, MR 1994487, 10.1216/rmjm/1181069993
Reference: [18] Shapiro, J. H.: Composition Operators and Classical Function Theory.Universitext: Tracts in Mathematics New York, Springer (1993). Zbl 0791.30033, MR 1237406
Reference: [19] Stević, S., Wolf, E.: Differences of composition operators between weighted-type spaces of holomorphic functions on the unit ball of $C^n$.Appl. Math. Comput. 215 (2009), 1752-1760. MR 2557418, 10.1016/j.amc.2009.07.036
Reference: [20] Toews, C.: Topological components of the set of composition operators on $H^{\infty}(B_N)$.Integral Equations Oper. Theory 48 (2004), 265-280. MR 2030531, 10.1007/s00020-002-1180-1
Reference: [21] Wolf, E.: Differences of composition operators between weighted Banach spaces of holomorphic functions on the unit polydisk.Result. Math. 51 (2008), 361-372. Zbl 1154.47018, MR 2400173, 10.1007/s00025-007-0283-z
Reference: [22] Yang, K. B., Zhou, Z. H.: Essential norm of the difference of composition operators on Bloch space.Czech. Math. J. 60 (2010), 1139-1152. Zbl 1220.47045, MR 2738975, 10.1007/s10587-010-0079-2
Reference: [23] Zeng, H. G., Zhou, Z. H.: An estimate of the essential norm of a composition operator from $ F(p, q, s)$ to $\mathcal{B}^\alpha$ in the unit ball.J. Inequal. Appl. Article ID 132970 (2010), 22 pp. MR 2645968
Reference: [24] Zhou, Z. H., Chen, R. Y.: Weighted composition operators from $F(p, q, s)$ to Bloch type spaces.Int. J. Math. 19 (2008), 899-926. Zbl 1163.47021, MR 2446507, 10.1142/S0129167X08004984
Reference: [25] Zhou, Z. H., Shi, J. H.: Compactness of composition operators on the Bloch space in classical bounded symmetric domains.Mich. Math. J. 50 (2002), 381-405. Zbl 1044.47021, MR 1914071, 10.1307/mmj/1028575740
Reference: [26] Zhu, K. H.: Spaces of Holomorphic Functions in the Unit Ball.Graduate Texts in Mathematics 226 Springer, New York (2005). Zbl 1067.32005, MR 2115155
.

Files

Files Size Format View
CzechMathJ_62-2012-3_10.pdf 275.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo