Title:
|
Differences of weighted composition operators from Hardy space to weighted-type spaces on the unit ball (English) |
Author:
|
Zhou, Ze-Hua |
Author:
|
Liang, Yu-Xia |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
62 |
Issue:
|
3 |
Year:
|
2012 |
Pages:
|
695-708 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we limit our analysis to the difference of the weighted composition operators acting from the Hardy space to weighted-type space in the unit ball of $\mathbb {C}^N$, and give some necessary and sufficient conditions for their boundedness or compactness. The results generalize the corresponding results on the single weighted composition operators and on the differences of composition operators, for example, M. Lindström and E. Wolf: Essential norm of the difference of weighted composition operators. Monatsh. Math. 153 (2008), 133--143. (English) |
Keyword:
|
weighted composition operator |
Keyword:
|
Hardy space |
Keyword:
|
weighted Bergman space |
Keyword:
|
essential norm |
Keyword:
|
compact |
Keyword:
|
difference |
MSC:
|
32A37 |
MSC:
|
32H02 |
MSC:
|
47B33 |
MSC:
|
47B38 |
MSC:
|
47G10 |
idZBL:
|
Zbl 1258.47051 |
idMR:
|
MR2984629 |
DOI:
|
10.1007/s10587-012-0040-7 |
. |
Date available:
|
2012-11-10T21:10:10Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143020 |
. |
Reference:
|
[1] Allen, R. F., Colonna, F.: Weighted composition operators from $H^{\infty}$ to the Bloch space of a bounded homogeneous domain.Integral Equations Oper. Theory 66 (2010), 21-40. MR 2591634, 10.1007/s00020-009-1736-4 |
Reference:
|
[2] Bonet, J., Domański, P., Lindström, M.: Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions.Can. Math. Bull. 42 (1999), 139-148. Zbl 0939.47020, MR 1692002, 10.4153/CMB-1999-016-x |
Reference:
|
[3] Bonet, J., Domański, P., Lindström, M., Taskinen, J.: Composition operators between weighted Banach spaces of analytic functions.J. Aust. Math. Soc., Ser. A 64 (1998), 101-118. Zbl 0912.47014, MR 1490150, 10.1017/S1446788700001336 |
Reference:
|
[4] Bonet, J., Lindström, M., Wolf, E.: Differences of composition operators between weighted Banach spaces of holomorphic functions.J. Aust. Math. Soc. 84 (2008), 9-20. MR 2469264, 10.1017/S144678870800013X |
Reference:
|
[5] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions.Studies in Advanced Mathematics Boca Raton, FL, CRC Press (1995). Zbl 0873.47017, MR 1397026 |
Reference:
|
[6] Dai, J. N., Ouyang, C. H.: Differences of weighted composition operators on $H_{\alpha}^\infty(B_N)$.J. Inequal. Appl. Article ID 127431 (2009), 19 pp. MR 2579553 |
Reference:
|
[7] Fang, Z. S., Zhou, Z. H.: Differences of composition operators on the space of bounded analytic functions in the polydisc.Abstr. Appl. Anal. Article ID 983132 (2008), 10 pp. Zbl 1160.32009, MR 2466222 |
Reference:
|
[8] Fang, Z. S., Zhou, Z. H.: Differences of composition operators on the Bloch space in the polydisc.Bull. Aust. Math. Soc. 79 (2009), 465-471. Zbl 1166.47032, MR 2505351, 10.1017/S0004972709000045 |
Reference:
|
[9] Gorkin, P., Mortini, R., Suarez, D.: Homotopic composition operators on $H^\infty(B^n)$.Jarosz, Krzysztof (ed.), Function spaces. Proceedings of the 4th conference, Edwardsville, IL, USA (2002), Providence, RI: American Mathematical Society (AMS), Contemp. Math 328 177-188 (2003). MR 1990399 |
Reference:
|
[10] Hosokawa, T., Izuchi, K., Ohno, S.: Topological structure of the space of weighted composition operators on $H^\infty$.Integral Equations Oper. Theory 53 (2005), 509-526. MR 2187435 |
Reference:
|
[11] Hosokawa, T., Ohno, S.: Topological structures of the sets of composition operators on the Bloch spaces,.J. Math. Anal. Appl. 314 (2006), 736-748. Zbl 1087.47029, MR 2185263, 10.1016/j.jmaa.2005.04.080 |
Reference:
|
[12] Hosokawa, T., Ohno, S.: Differences of composition operators on the Bloch spaces.J. Oper. Theory 57 (2007), 229-242. Zbl 1174.47019, MR 2328996 |
Reference:
|
[13] Lindström, M., Wolf, E.: Essential norm of the difference of weighted composition operators.Monatsh. Math. 153 (2008), 133-143. MR 2373366, 10.1007/s00605-007-0493-1 |
Reference:
|
[14] MacCluer, B. D.: Compact composition operators on $H^p(B_N)$.Mich. Math. J. 32 (1985), 237-248. Zbl 0585.47022, MR 0783578, 10.1307/mmj/1029003191 |
Reference:
|
[15] MacCluer, B. D., Ohno, S., Zhao, R.: Topological structure of the space of composition operators on $H^\infty$.Integral Equations Oper. Theory 40 (2001), 481-494. MR 1839472 |
Reference:
|
[16] Moorhouse, J.: Compact differences of composition operators.J. Funct. Anal. 219 (2005), 70-92. Zbl 1087.47032, MR 2108359, 10.1016/j.jfa.2004.01.012 |
Reference:
|
[17] Ohno, S., Stroethoff, K., Zhao, R.: Weighted composition operators between Bloch-type spaces.Rocky Mt. J. Math. 33 (2003), 191-215. Zbl 1042.47018, MR 1994487, 10.1216/rmjm/1181069993 |
Reference:
|
[18] Shapiro, J. H.: Composition Operators and Classical Function Theory.Universitext: Tracts in Mathematics New York, Springer (1993). Zbl 0791.30033, MR 1237406 |
Reference:
|
[19] Stević, S., Wolf, E.: Differences of composition operators between weighted-type spaces of holomorphic functions on the unit ball of $C^n$.Appl. Math. Comput. 215 (2009), 1752-1760. MR 2557418, 10.1016/j.amc.2009.07.036 |
Reference:
|
[20] Toews, C.: Topological components of the set of composition operators on $H^{\infty}(B_N)$.Integral Equations Oper. Theory 48 (2004), 265-280. MR 2030531, 10.1007/s00020-002-1180-1 |
Reference:
|
[21] Wolf, E.: Differences of composition operators between weighted Banach spaces of holomorphic functions on the unit polydisk.Result. Math. 51 (2008), 361-372. Zbl 1154.47018, MR 2400173, 10.1007/s00025-007-0283-z |
Reference:
|
[22] Yang, K. B., Zhou, Z. H.: Essential norm of the difference of composition operators on Bloch space.Czech. Math. J. 60 (2010), 1139-1152. Zbl 1220.47045, MR 2738975, 10.1007/s10587-010-0079-2 |
Reference:
|
[23] Zeng, H. G., Zhou, Z. H.: An estimate of the essential norm of a composition operator from $ F(p, q, s)$ to $\mathcal{B}^\alpha$ in the unit ball.J. Inequal. Appl. Article ID 132970 (2010), 22 pp. MR 2645968 |
Reference:
|
[24] Zhou, Z. H., Chen, R. Y.: Weighted composition operators from $F(p, q, s)$ to Bloch type spaces.Int. J. Math. 19 (2008), 899-926. Zbl 1163.47021, MR 2446507, 10.1142/S0129167X08004984 |
Reference:
|
[25] Zhou, Z. H., Shi, J. H.: Compactness of composition operators on the Bloch space in classical bounded symmetric domains.Mich. Math. J. 50 (2002), 381-405. Zbl 1044.47021, MR 1914071, 10.1307/mmj/1028575740 |
Reference:
|
[26] Zhu, K. H.: Spaces of Holomorphic Functions in the Unit Ball.Graduate Texts in Mathematics 226 Springer, New York (2005). Zbl 1067.32005, MR 2115155 |
. |