Previous |  Up |  Next

Article

Title: An embedding theorem for a weighted space of Sobolev type and correct solvability of the Sturm-Liouville equation (English)
Author: Chernyavskaya, Nina A.
Author: Shuster, Leonid A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 3
Year: 2012
Pages: 709-716
Summary lang: English
.
Category: math
.
Summary: We consider the weighted space $W_1^{(2)}(\mathbb R,q)$ of Sobolev type $$ W_1^{(2)}(\mathbb R,q)=\left \{y\in A_{\rm loc}^{(1)}(\mathbb R)\colon \|y''\|_{L_1(\mathbb R)}+\|qy\|_{L_1(\mathbb R)}<\infty \right \} $$ and the equation $$ - y''(x)+q(x)y(x)=f(x),\quad x\in \mathbb R. \leqno (1) $$ Here $f\in L_1(\mathbb R)$ and $0\le q\in L_1^{\rm loc}(\mathbb R).$ \endgraf We prove the following: \item {1)} The problems of embedding $W_1^{(2)}(\mathbb R,q)\hookrightarrow L_1(\mathbb R)$ and of correct solvability of (1) in $L_1(\mathbb R) $ are equivalent; \item {2)} an embedding $W_1^{(2)}(\mathbb R,q)\hookrightarrow L_1(\mathbb R) $ exists if and only if $$\exists a>0\colon \inf _{x\in \mathbb R}\int _{x-a}^{x+a} q(t) {\rm d} t>0.$$ (English)
Keyword: Sobolev space
Keyword: embedding theorem
Keyword: Sturm-Liouville equation
MSC: 34B24
MSC: 34B40
MSC: 46E35
idZBL: Zbl 1265.34106
idMR: MR2984630
DOI: 10.1007/s10587-012-0041-6
.
Date available: 2012-11-10T21:11:20Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143021
.
Reference: [1] Chernyavskaya, N., Shuster, L.: Estimates for the Green function of a general Sturm-Liouville operator and their applications.Proc. Am. Math. Soc. 127 (1999), 1413-1426. Zbl 0918.34032, MR 1625725, 10.1090/S0002-9939-99-05049-2
Reference: [2] Chernyavskaya, N., Shuster, L.: A criterion for correct solvability of the Sturm-Liouville equation in the space $L_p(R)$.Proc. Am. Math. Soc. 130 (2002), 1043-1054. Zbl 0994.34014, MR 1873778, 10.1090/S0002-9939-01-06145-7
Reference: [3] Chernyavskaya, N., Shuster, L.: A criterion for correct solvability in $L_p(\Bbb R)$ of a general Sturm-Liouville equation.J. Lond. Math. Soc., II. Ser. 80 (2009), 99-120. Zbl 1188.34036, MR 2520380, 10.1112/jlms/jdp012
Reference: [4] Grinshpun, E., Otelbaev, M.: On smoothness of solutions of nonlinear Sturm-Liouville equation in $L_1(-\infty,\infty)$.Izv. Akad. Nauk Kaz. SSR, Ser. Fiz.-Mat. 5 (1984), 26-29 Russian. MR 0774312
Reference: [5] Mynbaev, K., Otelbaev, M. O.: Weighted Functional Spaces and the Spectrum of Differential Operators.Moskva: Nauka 286 (1988), Russian. English summary. Zbl 0651.46037, MR 0950172
Reference: [6] Ojnarov, R.: Separability of the Schrödinger operator in the space of summable functions.Dokl. Akad. Nauk SSSR 285 (1985), 1062-1064. MR 0820597
Reference: [7] Ojnarov, R.: Some properties of the Sturm-Liouville operator in $L_p$.Izv. Akad. Nauk Kaz. SSR, Ser. Fiz.-Mat. 152 (1990), 43-47. MR 1089974
Reference: [8] Otelbaev, M. O.: On coercive estimates of solutions of difference equations.Tr. Mat. Inst. Steklova 181 (1988), Russian 241-249. Zbl 0661.39003, MR 0945435
Reference: [9] Otelbaev, M.: On smoothness of a solution of a nonlinear parabolic equation.In 10th Czechoslovak-Soviet Meeting ``Application of Fundamental Methods and Methods of Theory of Functions to Problems of Mathematical Physics'', Stara Gura, 26.09.--01.10. 1988 37.
.

Files

Files Size Format View
CzechMathJ_62-2012-3_11.pdf 239.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo