Previous |  Up |  Next

Article

Title: Variable Lebesgue norm estimates for BMO functions (English)
Author: Izuki, Mitsuo
Author: Sawano, Yoshihiro
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 3
Year: 2012
Pages: 717-727
Summary lang: English
.
Category: math
.
Summary: In this paper, we are going to characterize the space ${\rm BMO}({\mathbb R}^n)$ through variable Lebesgue spaces and Morrey spaces. There have been many attempts to characterize the space ${\rm BMO}({\mathbb R}^n)$ by using various function spaces. For example, Ho obtained a characterization of ${\rm BMO}({\mathbb R}^n)$ with respect to rearrangement invariant spaces. However, variable Lebesgue spaces and Morrey spaces do not appear in the characterization. One of the reasons is that these spaces are not rearrangement invariant. We also obtain an analogue of the well-known John-Nirenberg inequality which can be seen as an extension to the variable Lebesgue spaces. (English)
Keyword: variable exponent
Keyword: Morrey space
Keyword: BMO
MSC: 42B35
MSC: 46E30
idZBL: Zbl 1265.42087
idMR: MR2984631
DOI: 10.1007/s10587-012-0042-5
.
Date available: 2012-11-10T21:12:47Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143022
.
Reference: [1] Cruz-Uribe, D., Diening, L., Fiorenza, A.: A new proof of the boundedness of maximal operators on variable Lebesgue spaces.Boll. Unione Mat. Ital. (9) 2 (2009), 151-173. Zbl 1207.42011, MR 2493649
Reference: [2] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: The maximal function on variable $L^p$ spaces.Ann. Acad. Sci. Fenn. Math. 28 (2003), 223-238 29 (2004), 247-249. MR 2041952
Reference: [3] Diening, L.: Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$.Math. Inequal. Appl. 7 (2004), 245-253. MR 2057643
Reference: [4] Diening, L.: Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces.Bull. Sci. Math. 129 (2005), 657-700. MR 2166733, 10.1016/j.bulsci.2003.10.003
Reference: [5] Diening, L., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T.: Maximal functions in variable exponent spaces: limiting cases of the exponent.Ann. Acad. Sci. Fenn. Math. 34 (2009), 503-522. MR 2553809
Reference: [6] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Math. {2017} Springer, Berlin (2011). Zbl 1222.46002, MR 2790542
Reference: [7] Ho, K.: Characterization of BMO in terms of rearrangement-invariant Banach function spaces.Expo. Math. 27 (2009), 363-372. Zbl 1174.42025, MR 2567029, 10.1016/j.exmath.2009.02.007
Reference: [8] Ho, K.: Characterizations of BMO by $A_p$ weights and $p$-convexity.Hiroshima Math. J. 41 (2011), 153-165. Zbl 1227.42024, MR 2849152, 10.32917/hmj/1314204559
Reference: [9] Izuki, M.: Boundedness of commutators on Herz spaces with variable exponent.Rend. Circ. Mat. Palermo 59 (2010), 199-213. Zbl 1202.42029, MR 2670690, 10.1007/s12215-010-0015-1
Reference: [10] John, F., Nirenberg, L.: On functions of bounded mean oscillation.Comm. Pure Appl. Math. 14 (1961), 415-426. Zbl 0102.04302, MR 0131498, 10.1002/cpa.3160140317
Reference: [11] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czech. Math. J. 41 (1991), 592-618. MR 1134951
Reference: [12] Lerner, A. K.: On some questions related to the maximal operator on variable $L^p$ spaces.Trans. Amer. Math. Soc. 362 (2010), 4229-4242. MR 2608404, 10.1090/S0002-9947-10-05066-X
Reference: [13] Luxenberg, W. A. J.: Banach Function Spaces.Technische Hogeschool te Delft Assen (1955) \MR 0072440.
Reference: [14] Nakano, H.: Modulared Semi-Ordered Linear Spaces.Maruzen Co., Ltd. Tokyo (1950) \MR 0038565. Zbl 0041.23401, MR 0038565
Reference: [15] Nakano, H.: Topology of Linear Topological Spaces.Maruzen Co., Ltd. Tokyo (1951) \MR 0046560. MR 0046560
Reference: [16] Sawano, Y., Sugano, S., Tanaka, H.: Orlicz-Morrey spaces and fractional operators.Potential Anal. 36 (2012), 517-556. Zbl 1242.42017, MR 2904632, 10.1007/s11118-011-9239-8
Reference: [17] Sawano, Y., Sugano, S., Tanaka, H.: Olsen's inequality and its applications to Schrödinger equations.RIMS Kôkyûroku Bessatsu B26 (2011), 51-80. Zbl 1236.42018, MR 2883846
.

Files

Files Size Format View
CzechMathJ_62-2012-3_12.pdf 263.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo